'," frontiers

in Human Neuroscience

ORIGINAL RESEARCH
published: 19 April 2016
doi: 10.3389/fnhum.2016.00158

OPEN ACCESS

Edited by:
Srikantan S. Nagarajan,
University of California, San Francisco,
USA

Reviewed by:
Julia P. Owen,
University of California, San Francisco,
USA
Pratik Mukherjee,
University of California, San Francisco,
USA
Olga Tymo yeva,
University of California, San Francisco,
USA

*Correspondence:
Yong He
yong.he@bnu.edu.cn

Received: 05 August 2015
Accepted: 30 March 2016
Published: 19 April 2016

Citation:
Xia M, Lin Q, Bi Y and He Y (2016)
Connectomic Insights into
Topologically Centralized Network
Edges and Relevant Motifs in the
Human Brain.
Front. Hum. Neurosci. 10:158.
doi: 10.3389/fnhum.2016.00158

®

CrossMark

Connectomic Insights into
Topologically Centralized Network
Edges and Relevant Motifs in the
Human Brain

Mingrui Xia, Qixiang Lin, Yanchao Bi and Yong He *

State Key Laboratory of Cognitive Neuroscience and Learngnand IDG/McGovern Institute for Brain Research, Beijing
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White matter (WM) tracts serve as important material substras for information transfer
across brain regions. However, the topological roles of WM &cts in global brain
communications and their underlying microstructural basi remain poorly understood.
Here, we employed diffusion magnetic resonance imaging andgraph-theoretical

approaches to identify the pivotal WM connections in human wble-brain networks and
further investigated their wiring substrates (including Wihicrostructural organization
and physical consumption) and topological contributions d the brain's network

backbone. We found that the pivotal WM connections with higlyl topological-edge

centrality were primarily distributed in several long-raye cortico-cortical connections

(including the corpus callosum, cingulum and inferior frdn-occipital fasciculus) and
some projection tracts linking subcortical regions. Thesepivotal WM connections
exhibited high levels of microstructural organization indated by diffusion measures
(the fractional anisotropy, the mean diffusivity and the & diffusivity) and greater
physical consumption indicated by streamline lengths, anaontributed signi cantly to

the brain's hubs and the rich-club structure. Network motifanalysis further revealed
their heavy participations in the organization of communation blocks, especially in
routes involving inter-hemispheric heterotopic and extmely remote intra-hemispheric
systems. Computational simulation models indicated the sérp decrease of global
network integrity when attacking these highly centralize@&dges. Together, our results
demonstrated high building-cost consumption and substanial communication capacity
contributions for pivotal WM connections, which deepens ourunderstanding of the
topological mechanisms that govern the organization of huiain connectomes.

Keywords: connectomics, diffusion MRI, hub, rich-club, motif, microstructure

INTRODUCTION

The white matter (WM) bers, i.e., bundles of myelinated asothat provide connections
between gray matter (GM) regions, serve as the foundatiomfofrination communication in

the human brain. Their wiring patterns directly determineetbopological performance of brain
networks. With recent advances in di usion magnetic resocaimaging (MRI) techniques and
computational tractography methodslpri et al., 1999 the WM ber bundles in human brain can
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be reconstructed in a noninvasive way and the whole-braiedges in the brain network was quanti ed using the edge-
structural networks can be generated at a macroscopic levieétweenness centrality measuremehtegman, 1977; Girvan
(Hagmannetal., 2008; Gong et al., 2))@dth nodes representing and Newman, 2002 and highly centralized WM connections
GM regions and edges representing the characteristics of WMere identi ed as pivotal edges, with their wiring substeate
ber bundles linking GM regions. The mapping and descriptions(including WM microstructural organization and streamén
of topological organization in human brain WM networks length) and topological nexus with brain hubs, rich-club and
[i.e., “human connectomics” Jporns et al., 200b has led path motif proles systematically examined. Validations wer
to compelling discoveries of topological properties of brainperformed using two sessions of data, with both low- (90 nddes
networks, including their small-worldnessi§@gmann et al., 2008; and high-resolution (1024 nodes) nodal de nitions.
Gong et al., 2009 modular structure lagmann et al., 2008;
He et al., 2000 highly connected hubsSporns et al., 2007;
Hagmann et al., 2008; Gong et al., 2009; van den Heuvel aMATERIALS AND METHODS
D ety s Partcipants

! ' N he data employed in this study were a subset of the

lobal and nodal properties, the topological roles of networT
9 . prop ’ pologic . . kConnectivity-based Brain Imaging Research Database (C-BIRD
edges (i.e., WM tracts) that are responsible for information . . ? .
at, Beijing Normal University. This subset includes data from

transfer across regions or systems have been less explorgd. e
glons y . P E participants (male/female: 30/27; age: 19-30 years) who
Several long-range cortico-cortical WM connections, saslthe : . .
completed two MRI scan sessions at an interval of approximately

corpus callosum, superior longitudinal faSC'C.UIUS and _clngu_ 6-weeks (40.94 4.51 days). All participants were right-handed
have been observed to be more frequently involved in e cient

. . - and had no history of neurological or psychiatric disorders.
information transfer in the network than short-range onésqng - - . s

W - . Written informed consent was obtained from each participant,
et al., 200Q From an “edge-centric” perspectivés Reus et al.

(2014)demonstrated the e ects of the disrupted connections onand this study was approved by the Institutional Review Board

- o . of the State Key Laboratory of Cognitive Neuroscience and
network topologies and within di erent network communities. . - -
. L : Learning at Beijing Normal University. These data have been
However, the underlying principles for the di erent topologlca . . T L
released in the Consortium for Reliability and Reproducibilit
roles of WM tracts are largely unknown.

What, in terms of wiring substrates and contributions (CoRR) dataset (http://fcon_1000.projects.nitrc.org/i@hRR/

makes certain WM tracts more topologically important than htmi/bnu_1.htmliLin etal., 201}
others? Speci cally, (i) do the macro-structural communica
capacities of WM connections depend upon their microstructuraData Acquisition and Preprocessing
organization and other physical consumptions such as beAll MRI data were obtained using a Siemens Trio Tim 3.0 T
length? Heavier communicational/information loads ovwgrin  scanner (Siemens Medical Systems, Erlangen, Germany) with a
these macro-scale brain networks may impose higher demand®-channel phased-array head coil in the Imaging Center for
on biological resources, re ected by high-level microsttmal  Brain Research, Beijing Normal University. Di usion weighted
properties (e.g., high axonal density or compact myelin) andmaging data were acquired using a single-shot twice-refedu
long projection distancel(aughlin and Sejnowski, 2003; Kaiserspin-echo di usion echo-planarimaging sequence. The segeienc
and Hilgetag, 2006 (ii) How do the pivotal WM connections parameters were repetition time (TR) 8000 ms, echo time
contribute to the topological properties of network hubs and(TE) D 89 ms, 30 non-collinear di usion directions with B
rich-club structure? The WM tracts with high communication 1000 s/mnd and an additional volume with ID 0 s/mn?, data
capacity could facilitate the transfer of the massive sgyjnamatrix D 128 128, eld of view (FOV)D 282mm 282 mm,
generated and processed by the biologically costly hut2mm slice thickness, isotropic voxel size (2.2%mandwidth
(Vaishnavi et al., 2010; Liang et al., 2013; Tomasi et al3;20ID 1562 Hz/pixel, and 62 transverse slices without gap covering
Collin et al., 201 and therefore, contributing to the formation the whole brain, number of excitatio® 2. Three-dimensional
of the core structure such as rich-club. (iii) What are thetpat high-resolution brain structural images were acquired king a
motif patterns in the human brain structural networks in tesm T1-weighted, sagittal 3D magnetization prepared rapid gradie
of pivotal edges? The minimum communication blocks, de nedecho (MP-RAGE) sequences. The sequence parameters were
as the shortest paths between regions, indicate the simpd¢st yfR/TE/inversion timeD 2530 ms/3.39 ms/1100 ms, ip andle
complete information routes in a brain networkV((lo et al., 7, FOV D 256 mm 256 mm, in-plane resolutio 256
2002; van den Heuvel et al., 201Their patterns of utilization 256, slice thicknedd 1.33 mm, and 144 sagittal slices covering
of pivotal edges, namely their path motifs, could re ect thethe whole brain. The data of session 1 were used for the main
information transfer strategy of the human brain. analyses and the data of session 2 were used for validation
To address these issues, we collected two scanning sessianalysis.
of diusion MRI data in 57 healthy adults and built up For each participant, the diusion MRI data were
the human whole-brain structural networks. We rst fully preprocessed with FMRIB's Di usion Toolbox of FSL (Version
chart the pivotal WM connections, characterized by highly5.0; http://www.fmrib.ox.ac.uk/fsl) to correct artifaégtsiuced by
topological centralization, which then allow us to study ithe head motion and eddy currents by applying an a ne alignment
critical characteristics. The communication capacity of WMof each di usion-weighted image to the b0 image.
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Network Construction visualizations for brain networks were generated using the
Figure lillustrates the owchart of the construction of whole- BrainNet Viewer Kia et al., 2013

brain structural networks, which was outlined as follows. o .
Identi cation of Pivotal Edges

Network Node De nition We calculated the edge betweenness centrality (EBC) fdr eac

In this study, we employed the Automated Anatomical€dge inthe WM network. The betweenness of an eBf€’isa
Labeling Atlas (AAL) {zourio-Mazoyer et al., 2002to  9lobal centrality measures that captures the in uence of dgee
parcel the brain into 90 cortical and subcortical regionsover information ow between other nodes in the netonBffdge
The detailed procedure for brain WM networks constructionis de ned as the number of shortest paths between any pairs of
has been described previousldng et al., 2009 In brief, other nodes that pass through the edgegeman, 1977; Girvan
for each individual, the T1-weighted images were rstlyand Newman, 2002

coregistered to the averaged b0 image (two b0 images X
were obtained for each subject in this study) in native B?dgeD _kil
di usion space using a linear transformation. The transfome jemk ik

T1-weighted images were then nonlinearly transformed to

the ICBM152 T1 template in the Montreal Neurological wherejandk are any two nodes that are not linked directly with
Institute (MNI) space and the transformation matrices wereedgei in the network, . is the total number of shortest paths
estimated. Finally, the inversed transformation was use@letween nodegandk and j:k() IS the number of shortest paths
to warp the AAL atlases from the MNI space to thebetween nodegsandk that pass through edge The normalized
native diusion space, therefore, obtaining the parcellationEBC was then calculated as follows:

for each individual. Notably, discrete labeling values in

the atlas were preserved by the use of a nearest-neighbor cdte B9 mean BF9%°
interpolation method. All of these linear and nonlinear b D cdge
mappings were implemented by using the SPM8 package std B

(www. l.ion.ucl.ac.uk/spm/software/spm8/).

where,mear(BiEd93 and stdBFd93 is the mean value and the
White Matter Tractography standard deviation (SD) of EBC in each network, respectively
Reconstruction of the whole-brain WM tracts was performedyyq edges with the largest normalized E&ﬁd?e> 1, ie. the
using DTlstudio (version 3.0.3) based on the Fiber Assignig  £pc> 1 Sp above mean) were identi ed as the pivotal edges
Continuous Tracking (FACT) algorithmi\(ori etal., 199). Fiber i, the networks. Additionally, to examine the EBC distributio
tracking was computed by seeding each voxel with fractiongl¢ the prain networks, we used three possible forms: a power-
anisotropy (FA) value greater than 0.2. Fiber tracking Wagw, P(x) x : an exponential modeP(x) exp( X): and
stqpped at voxels where RKA0.2 or if the turning angle bgtween an exponentially truncated power-la®(x) x expl/g). The
adjacent steps was greater than.4all the ber pathways inthe ¢ mjative distribution was used to reduce the e ects of noise

brain were reconstructed using the deterministic tractqgry (Strogatz, 2001 and the goodness of tting was tested using R
method. values.

Network Edge De nition The Wiring Substrates of the Pivotal Edges

To perform the analyses on both the group and individual levelTo assess whether the betweenness of an edge depends on its
we de ned network edges in two ways. For the group-levewiring basis, including the WM microstructural propertiesdn
network, from the set of 57 individual connectivity matrige streamline length, we calculated the correlations betweB@

a group-level connectivity matrix was computed by selectingnd each of the WM tract properties and further compared
all connections that were present in at least 50% of the grouihe dierences in these measurements between pivotal and
of individuals e Reus and van den Heuvel, 20L.3or the non-pivotal edges. Previous research has demonstratedtbat t
individual networks, we selected a threshold value for thénicrostructural properties of WM such as axonal membrane or
number of streamlines. Two regions were considered to beayelin can in uence the degree of di usion anisotropy indieat
structurally connected if there are at least 3 streamlinés @nd by the indices of di usion tensor imaging3eaulieu, 2002Here,
points located in these two regions. All of these networksewerfour WM di usion indices were measured to assess the WM
unweighted. Given the high consistency between the resiilts microstructural properties, including the FA, the mean di ugty
group-level and individual level analyses, we mainly regbrte(MD), the axial di usivity (AD) and the radial di usivity (RD)

the results of group-level WM network and treated individual (Basser, 1995; Song et al., 200these four metrics estimate

network analyses as a validation. di erent aspects of di usion properties of the WM tissues: i)
FA expresses the degree of anisotropy of a diusion process
: q Q® , Q% ;@7
= 1 2 3
Network Analysis in a given voxelFA D % p , Where

Network analyses were carried out by using the Matlab "2cz2c?
BGL package (www.stanford.edu/~dgleich/programs/matlabQ D . 1 C ,C 3/ 3;ii) MD is often used to estimate
bgl/) and the GRETNA toolkits\(Vang et al., 2005 The 3D the total level of diusion:MD D (1 C > C 3)/3; iii)
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FIGURE 1 | A owchart for the construction of the whole-brain W M network. (A) The T1-weighted image was rstly rigidly coregistered to theaveraged b0
image in native diffusion space(B) The transformed T1 image was then nonlinearly transformeatthe ICBM152 T1 template in the MNI space, and the
transformation matrix T was estimated{C) the inversed transformation T-1 was used to warp the AAL ati&from the MNI space to the native diffusion space,
obtaining the parcellation for each individuakD) the whole-brain WM tracts were reconstructed by using deteministic tractography; (E) the WM bers connecting
each pair of regions were determined for each subject, thushe individual WM networks were constructed|F) the group-level connectivity matrix was computed by
selecting all connections that were present in at least 50% fathe group of individuals; and(G) both the individual and group-level networks were furthermalyzed by
using graph theoretical methods.

AD is a metric of the level of diusion in the direction of correlations were used to analyze the correlations betviEo

the rst eigenvector and of local ber orientationAD D and each of these ber properties across all edges in the nkswor
1; and iv) RD is an estimation of the amount of di usion in Furthermore, the di erences in these ber properties between
the perpendicular to the rst eigenvector and of the level ofpivotal and non-pivotal edges were determined by permutation
myelination of WM:RD D ( 2 C 3)/2. For each edge, these tests. To evaluate the total performance and consumption of
four metrics were estimated by averaging the values of thelso the pivotal edges, we further calculated the proportion of EBC
that the streamlines passed through, respectively. The stimam and streamline length of the pivotal edges. This was done by
length of each edge, which represents its wiring costsser summing up the EBC and streamline length of all the pivotal
and Hilgetag, 2006; Bullmore and Sporns, 20%as estimated edges and then dividing them by the total EBC and streamline
from the average length of the interconnecting streamliires length of the whole brain, respectively. The proportion cureks
each individual network. For the group-level network, aleth EBC and streamline length were plotted to demonstrate whether
above metrics were calculated by averaging the values owuée pivotal edges have over-average values, in which thésx-ax
existing edges across all individuals. Subsequently, Spaarm represents the proportion of edges sequenced in EBC and the
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y-axis represents the accumulate proportion of EBC or stra@nli wherek is the nodal degree to de ne hubi,  is the number of
length. Furthermore, the cost-performance for each edge wdisks among these hubs, and.  is the number of hub nodes.
estimated by dividing the EBC by the streamline length and waThen, the8 (k) was normalized t@ o) by comparing to the
compared between pivotal and non-pivotal edges. mean8 (k) of 1000 random networks of equal size and similar

_ . connectivity distribution:
Contributions to the Nodal Centralities y

Considering that the topological properties of nodes and edges 8 K
are highly interdependent in the brain network, we examirleel t 8nom k D ———

relationship between the betweenness of the edge and thageve 8 random K

nodal centralities of the two nodes it links. These nodal prtips

included nodal degree, e ciency, and betweenness. The hod&/here8 randon(K) is the averaged rich-club coe cient over the
degreeX; is a basic topological property, which is de ned as thel000 random networks. An increasing normaliZ&gorm(k) > 1

number of links connected to a node: over arange df re ects the existence of rich-club architecture in
X a network. In this study, we selected thavhere the8 norm(k)

KiD g reached the peak valuk (D 14) as the threshold for hub

i2N de nition, which represented the most signi cant rich-club

architecture (we also validated the results of other thodd
e.g.,.k > 9, see validation results). Once the rich hub nodes

j in the unweighted network. The nodal e ciency re ects the : - e
averaged communication capability of the given node to ather Were determined, the edges in the network can be divided

which is de ned as the averaged reciprocal of the shortest patii!© three categories according to the nodes they finkeji: (i
length from the given node to other nodesstora and Marchiori,  "ch-club connections” linking rich-club nodes, (i) “éler

whereg; D 1 if a connection exists between nodand node

. connections” linking rich-club nodes to non-rich-club nesd,
200D: o . S .
p and (iii) “local connections” linking non-rich-club nodes each
j2n:j el ! other (van den Heuvel et al., 20).ZFinally, the di erences in
ED N 1 EBC and proportion of number/EBC of the pivotal edges among

these three categories of connections were determined Ing usi
whereL;; * is the reciprocal of the shortest path length betweemNOVA with post-hoc permutation tests and Chi square tests,
nodesi and j. The de nition for nodal betweennesBi”Ode is  respectively.
similar to edge betweenness, which is de ned as the number of
shortest paths between pairs of other nodes that pass throwgh tFommunication Length and Path Motifs

node Freeman, 1977 To further assess the importance of pivotal edges in brain
X communication, we analyzed the communication length and

B D jikeil path motifs of the WM network. Both metrics were based on

j6Mm6D the path length between any pair of nodes in the network.

Firstly, all 40051 .n 1/ 2,n =90 unique shortest paths

where j is the number of shortes‘t paths between noglasd Jetween all 90 nodes in the WM network were traced. Second,
k that pass through nodie Spearman’s correlations were adopte L
the communication length of each shortest path was calcdlate

o _analyze the correlations betwez_en EBC and nodal de_gregs the total streamline length of the edges that were usedein th
e ciency and betweenness, respectively, across all edgéein

networks. The dierences on these nodal properties betweeFlath' Subsequently, for each of the shortest paths, the stiream|

. . . ~“length spent on pivotal or non-pivotal edges was calculated.
pivotal and non-pivotal edges were further determined by gsin _. -
. Finally, once aggregated across all shortest paths, sawdicas
permutation tests.

were calculated, including (i) the percentage of paths thioug
Contributions of the Pivotal Edges to the Rich-Club pivotal edges, which was calculated by dividing the number
Structure of shortest paths passing through pivotal edges by the total
The rich-club structure in networks is present when the high-"umber of shortest paths (i.e., 4005); (ii) the percentage of
degree nodes of a network tend to be more densely connecté@Mmunication lengths of paths through pivotal edges, which
among themselves than expecteddmancethus forming a core  Was computed by dividing the_sum of total streamline length of
architecture in the brain network. Such a structure has ndge (h0Se shortest paths through pivotal edges by the sum of tia tot
been revealed not only in animal braingdrriger et al., 2012: de Streamline length of all the shortest paths; and (iii) the petage
Reus and van den Heuvel, 20)3ut also in the human brain ©f communication length spent on the pivotal edges in paths
(van den Heuvel and Sporns, 2011: Collin et al., 20Td assess through pivotal ed.ges, which was de ned as the ratio between
whether the edges belonging to the rich-club had higher EBEE sum of streamline length pivotal edges of every shortdspa
and whether the rich-club had more pivotal edges, we examine@d the total streamline length of all the shortest paths Wk

the rich-club architecture of the WM network. The rich-club through pivotal edges. _ _
coe cient 8 (k) was rst calculated as follows: The ordered sequence of the pivotal or the non-pivotal

edges on the routes of each shortest path were referred to
25k as the “path motifs.” Therefore, six patterns of path motifs

8 k D———
Nog.Nsg U were identi ed, including the “N” (non-pivotal), “P” (pivotd,
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“N-P” (non-pivotal—pivotal), “N-P-N" (non-pivotal—pivotal— additional edges from the networks randomly and recomputed
non-pivotal), “P-N-P” (pivotal—non-pivotal—pivotal), and “N the two measures. To evaluate the targeted attack toleravee
P-N-P” (non-pivotal—pivotal—non-pivotal—pivotal). Notahly repeated the above processes but removed the edges with the
these path motifs only represented the changes on edge typegseatest betweenness. Considering the dynamical compensat
but not the exact edge numbers on the path. For example, thie the human brain, we recalculated the edge betweenness aft
“N-P-N" included paths with three edges (NPN), four edgeseach removal.

(NNPN, NPPN, and NPNN) or more edges (e.g., NNNPN).

Almost all paths could be classi ed into the six path motifs

according to their sequences of edges along the path traveledalidation Analysis

Subsequently, the distribution of path motifs was obtaingd b To evaluate the reproducibility of our ndings, we validated
counting the numbers of the shortest paths in each motif patter our main ndings via the following four procedures. Firstly,
To assess whether the frequency of each path motif in the WMe parceled the whole brain using a randomly generated
network was at chance, we generated 1000 matched randdmgh-resolution template with 1024 node<glesky et al.,
networks, identi ed their pivotal edges, and calculatedithe 2010, and reconstructed the WM network. We repeated
path motif distributions. The Z score for each path motif wasour analysis to determine whether our main ndings are
then computed by subtracting the mean value from the valuéndependent from node de nitions. Secondly, we performed
of proportion in the real WM network and dividing by the the analysis on each of the individual WM networks to assess
standard deviation of those in random networks. Furthermor the reproducibility of those main ndings on the individual
we examined the proportions of various path motifs across braiftevel. Thirdly, we analyzed the imaging data of the same
systems to investigate if di erent brain systems commuredat individuals scanned after an interval of approximately 41
via di erent path motif patterns. Speci cally, all brain regisn days to determine whether there were consistent topological
were rst classi ed into ten di erent brain systems (i.e.,éh organizations of the WM network across two scans. Finally, to
frontal, parietal, temporal, occipital, and subcortical syss assess whether our group-level ndings are sensitive to nétwo
in each hemisphere). Thus, all paths could be allocated intconstruction thresholds, two additional thresholds weppléed.

55 dierent groups, according to the positions of the two We reconstructed the group-level networks by selecting all
brain regions they connected. Then the proportion of theconnections that were present in at least 40 or 60% of the group
path motifs for each brain region pair could be measuredof individuals.

The 55 groups could be further classi ed into four categaries All of the comparisons between pivotal and non-pivotal edges
including within system, intra-hemispheric between system were performed using permutation tests. Brie y, for each riwgtr
inter-hemispheric homotopic and heterotopic paths. Finallywe initially calculated the di erence of the mean values tesw

a hierarchical clustering analysis was performed to deteemi pivotal and non-pivotal edges. An empirical distribution of the
whether the four categories had di erent patterns of path nmtif di erence was then obtained by randomly reallocating all o t
Brie y, a dissimilarity matrix was calculated by estimatithe values into two groups and re-computing the mean di erences
Euclidean distance between each pair of path groups, artktween the two randomized groups (10,000 permutations). The
agglomerative hierarchical cluster trees were generaieddon original di erence between pivotal and non-pivotal edges was
the dissimilarity matrix with the weighted linkage aggloaive  assigned g value as the proportion of random values in the

algorithm. obtained empirical distribution. The 95th percentile pointgioé
empirical distribution were used as critical values in a oaited
Vulnerability and Network Robustness test of whether the observed group di erences could occur by

The vulnerability is widely used to quantitatively measune t chance.

damage on the network performance caused by the simulated

failure of its elements Qosta et al., 2007 To calculate the

vulnerability of an individual edge in the WM network, we Results

removed the edges one by one from the network and calculata/e used di usion MRI tractography approaches to construct

the changes in global e ciency of the resulting networks.fést  the brain networks at both the group and the individual

the e ects of pivotal edges and non-pivotal edges on networkevels Figure 1). The group-based brain network with 90

performance, we compared the vulnerability values of these twnodes was fully connected, with 431 WM connections and a

groups using a permutation test. connection density of 10.8%. For the individuals, the deesiti
Network robustness, characterized by the degree of toleranof the brain networks ranged from 8 to 12% (mean SD:

against random failures and targeted attacks, is usuabycested 9.7% 0.9%). We further identi ed the pivotal WM connections

with the stability of a complex network. Here, we investigate (i.e., highly centralized edges) from the brain networks

the robustness of the networks by the removals of edgesér and systematically examined their physical characteristics

et al., 2007; He et al., 20080 address the random edge failure topological contributions to network communications. Give

tolerance of the WM network, we rst randomly removed one compatible results between 90-node and 1024-node networks

edge from the networks and then measured the changes in ttend between the group- and individual-level networks, wentyai

global e ciency and the size of the largest connected compne report the ndings from the group-based network analyses with

of the networks. Then, we continued to select and remov@0 nodes, unless speci cally mentioned.
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Edge Betweenness and Pivotal Edges in Forty-eight of the 431 edges (11.1%) were identi ed as pivotal
the WM Networks edges in the whole-brain WM networlE{gure 2Band Table 1),
Edge Betweenness Distribution including 16 inter-hemispheric and 32 intra-hemispheric (22

We used the EBCHreeman, 1977; Girvan and Newman, 2p02inter- and 10 intra-lobe) connections. The spatial distrilouti

to quantify the topological centrality or communication cajtg ~ Pattern of the group-based pivotal edges was largely consistent
of the WM edges in the structural brain network. The EBC ofWith the probability map of pivotal WM edges across individsial
an edge measures the frequency with which the shortest paffiigure 2B). Specically, these pivotal edges were primarily
between any region pair passes through this edge. The EB@fated in human major WM tracts, involving the corpus
distribution of the network was best tted by the exponeniyal Callosum (16/48), the cingulum (7/48), the uncinate faskis
truncated power-law formR(x)  x exp(/g)] rather than the ~ (4/48), and several projection tracts linking the subcatiwith
power-law P(x) x ] and or exponential P(x) exp( X)] cortical regions (5/48)Kigure 2Cand Table 1).

models Figure 2A). The estimated parameters wereD 0.98,

D 0.20, D 15.42 andR?2 D 0.998, respectively. Such a
model indicates that i) the WM edges play heterogeneous ioles
information communication across the network, and ii) theam
network includes some highly centralized edges but preibits
existence of extremely centralized WM connections withrigve
heavy loads.

Pivotal Edges within and between Brain Systems

We examined the spatial layout of the pivotal edges across
di erent brain systems (frontal, parietal, temporal, occipita
and subcortical): (i) While classifying all WM edges intoebr
categories (i.e., inter-hemispheric, intra-hemisphericwssn-
and within-systems), both the EBC values and proportion of
pivotal edges were signi cantly di erent [EBE,; 408) D 21.3,
pD 1.9 10 ° Proportion: %z D 22.3pD 1.0 10 5], with
Identifying Pivotal Edges a descending order of inter-hemispheric, between- and withi
The WM edges with higher EBC-(L SD above the whole-brain system connections; (ii) The parietal regions had the gstate
mean) are referred to as pivotal edges in the present studproportion of pivotal connections (50%, 24/48jigures 2B,Q,

FIGURE 2 | The pivotal edges and their wiring substrates inth e human WM network. (A) The EBC distribution of the WM network was best tted by an
exponentially truncated power-law form(B) The spatial pattern of the pivotal edges (red) of the grougelel WM network (upper) is quite similar to the probability ap
of the pivotal edges across individuals(C) Several pivotal WM edges were manifest in one representaé\subject. (D) The pivotal edges showed signi cantly higher
levels of WM microstructural organization, as indicated biA, MD, and AD, but not RD, than the non-pivotal ones. The errdars represent the standard deviation(E)
The pivotal edges also had greater streamline length and bitr cost-performance than the non-pivotal ones.(F) The curves for the proportion of edges vs.
proportions of EBC and streamline length. EBC, edge betweemess centrality; exp, exponential; trunc, truncated; PCuprecuneus; PUT, putamen; ACG, anterior
cingulate and paracingulate gyri; HES, Heschl's gyrus; STGuperior temporal gyrus; ORBInf, inferior frontal gyrusrbital part; MOG, middle occipital gyrus; ORBsup,
superior frontal gyrus, orbital part; ITG, inferior tempotayrus; FA, fractional anisotropy; MD, mean diffusivity; 3 axial diffusivity; RD, radial diffusivity; LEN, streaimé
length; C-P, cost-performance; n.s., not signi cant; L, lef; R, right.
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TABLE 1 | The pivotal edges of the human brain WM network and the ir properties.

No. RegionA  RegionB Normalized EBC  Fiber Length (mm)  Class Lobe s WM tracts Connection category  Vulnerability (%)
1 PoCG.R PCu.L 5.33 114.84 InterHemi  LP-RP  CC Feeder 0.333
2 PCu.L STG.L 5.26 87.92 InterLobe  LP-LT Short tract Feeder Q42

3 PCu.L PUT.L 4.93 88.92 InterLobe  LP-LS Projection tract  Rie-club 0.212
4 ORBsup.L  ORBsup.R 4.79 86.84 InterHemi  LF-RF CcC Rich-club .a87
5 PCu.R STG.R 3.75 87.45 InterLobe  RP-RT  Short tract Feeder P48

6 PCu.R PUTR 3.73 81.81 InterLobe  RP-RS  Projection tract  Rieclub 0.250

7 HIP.L HIP.R 3.53 92.38 InterHemi  LT-RT cC Local 0.395
8 SFGdor.R IFGtriang.L 3.36 98.42 InterHemi  LF-RF CcC Feeder »0
9 HES.L STG.L 3.29 18.61 IntraLobe  LT-LT Short tract Local 165
10 HES.R STG.R 3.29 14.82 IntraLobe  RT-RT Short tract Local 456
11 SPG.L SPG.R 3.17 114.43 InterHemi  LP-RP  CC Local 0.153
12 SPG.R PCu.L 2.92 111.02 InterHemi  LP-RP  CC Feeder 0.102
13 ORBsup.R ITG.R 2.72 76.77 InterLobe  RF-RT  UF Feeder 0.240
14 SOG.R MOG.L 2.62 137.84 InterHemi LR-RO CC Rich-club 0.162
15 CAL.R PCu.L 2.53 68.02 InterHemi  LP-RO CC Rich-club 0.156
16 SPG.L PCu.R 2.42 105.99 InterHemi  LP-RP  CC Feeder 0.139
17 PCu.L MTG.L 2.35 90.80 InterLobe  LP-LT Cingulum Feeder om
18 PHG.L PCu.L 2.25 39.17 InterLobe  LP-LT Cingulum Feeder 099
19 SFGdor.R ORBsup.R 2.14 13.82 IntraLobe  RF-RF  Short tract iBh-club 0.149
20 ACG.L PCu.L 2.03 75.95 InterLobe  LF-LP Cingulum Feeder 0m
21 MOG.L PUT.L 1.84 89.45 IntraLobe  LO-LS IFO Rich-club 0.107
22 SFGdor.L SFGdor.R 1.78 89.09 InterHemi  LF-RF cC Feeder 065
23 ORBsup.R  TPOmid.R 1.78 70.34 InterLobe  RF-RT  UF Feeder 018§
24 PCu.L PCL.L 1.70 13.62 IntraLobe  LP-LP Short tract Feeder ar2
25 HIP.R THAR 1.70 40.31 InterLobe  RT-RS  Unde ned Local 0.196
26 CAL.L PCu.R 1.67 63.70 InterHemi RP-LO CC Rich-club 0.143
27 PreCG.R PCL.L 1.65 125.33 InterHemi  RF-LP cC Local 0.142
28 PCu.L THA.L 1.63 70.58 InterLobe  LP-LS Projection tract  Feder 0.102
29 DCG.L PCu.L 1.60 33.52 InterLobe  LF-LP Cingulum Feeder 076
30 ORBsup.R  PUTR 1.59 38.59 InterLobe  RF-RS  Projection trac Rich-club 0.097
31 PHG.R PCu.R 1.57 40.99 InterLobe  RP-RT  Cingulum Feeder (0218
32 DCG.R PCu.R 1.55 32.99 InterLobe  RF-RP  Cingulum Feeder 09D
33 ORBsup.L  ITG.L 1.54 70.46 InterLobe  LF-LT UF Feeder 0.149
34 PCu.L PCu.R 1.53 96.65 InterHemi  LP-RP  CC Rich-club 0.056
35 ACG.R PCu.R 1.48 84.79 InterLobe  RF-RP  Cingulum Feeder (05118
36 CAU.L PUT.L 1.42 11.21 IntraLobe  LS-LS Unde ned Feeder 0.1&
37 SOG.R PCu.L 1.40 93.38 InterHemi  LP-RO  CC Rich-club 0.079
38 ORBInf.L MOG.L 1.38 137.25 InterLobe  LF-RO  IFO Feeder 0.158
39 PUT.R PAL.R 1.34 12.63 IntraLobe  RS-RS  Unde ned Feeder 0.13
40 PCu.L PCL.R 1.30 111.80 InterHemi  LP-RP  CC Feeder 0.218
41 SFGdor.R PUTR 1.28 48.90 InterLobe  RF-RS  Projection trac Rich-club 0.074
42 PCG.R PCu.L 1.20 33.89 InterHemi  LP-RP  CC Feeder 0.162
43 ORBInf.R CAL.R 117 144.23 InterLobe  RF-RO IFO Feeder 0.123
44 ORBsup.L  INS.L 1.12 18.42 InterLobe  LF-LS UF Feeder 0.134
45 PreCG.R MTG.R 111 95.09 InterLobe  RF-RT  Short tract Local 0.128
46 CAU.L THA.L 1.07 25.22 IntraLobe  LS-LS Unde ned Local 0.116

(Continued)
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TABLE 1 | Continued

No. Region A RegionB  Normalized EBC  Fiber Length (mm)  Class Lobe s WMtracts  Connection category  Vulnerability (%)
47 PUT.L PAL.L 1.06 12.18 IntraLobe LS-LS Unde ned Feeder 0.12
48 CAU.R PUT.R 1.04 11.82 IntraLobe RS-RS  Unde ned Feeder 0.0

Fiber tracts were determined by examining the tractography result of eddndividual with prior anatomical knowledge. No., number; EBC, edge betweenss centrality; PoCG, postcentral
gyrus; R, right; PCu, precuneus; L, left; ORBsup, superior frontal gys, orbital part; HIP, hippocampus; SFGdor, superior frontal gyrus, dorsolaterdHES, Heschl gyrus; SPG, superior
parietal gyrus; SOG, superior occipital gyrus; CAL, calcarine sure and surrounding cortex; PHG, parahippocampal gyrus; ACG, anteriorimgulate and paracingulate gyri; PreCG,
precentral gyrus; DCG, median cingulate and paracingulate gyri; @A caudate nucleus; ORBInf, inferior frontal gyrus, orbital part; PCG, ptarior cingulate gyrus; PUT, putamen; STG,
superior temporal gyrus; IFGtriang, inferior frontal gyrus, trigular part; ITG, inferior temporal gyrus; MOG, middle occipital gyrus; MTG, middtemporal gyrus; TPOmid, temporal pole:
middle temporal gyrus; PCL, paracentral lobule; THA, thalamus; INSpsula; InterHemi, inter-hemispheric connection; InterLobe; intrhemispheric inter-lobe connection; IntraLobe,
within lobe connections; LP, left parietal lobe; RP, right parietablbe; LT, left temporal lobe; LS, left subcortical; LF, left frontal lobe; REght frontal lobe; RT, right temporal lobe; RS, right
subcortical; RO, right occipital; LO, left occipital; CC, corpus chosum; UF, uncinate fasciculus; IFO, inferior frontooccipital famulus.

with 45.8% (22/48) of the pivotal edges structurally coneéct coe cients of 0.35, 0.38, and 0.59, respectively gak 0.0001)
with the bilateral precuneus, the frequently reported stawat  (Table S1). These results indicated a strong topologicalisiex
cores in previous human connectome studiesgmann et al., between pivotal edges and pivotal nodes in the WM network.
2008; Gong et al., 2009; van den Heuvel and Sporns)2011

- . Contribution to the Rich-Club Architecture

The Wiring Substrates of the Pivotal WM We examined the contribution of pivotal WM edges to the rich-
Edges club architecture of the WM networkEigure 4A illustrates the
We further explored whether topologically centralized netwo cyrye of the normalized rich-club coe cientd norm(K), over a
edges involve high-level microstructural organizationdan range of nodal degred, The 8 nom(K) Were larger than 1 ak
expensive physical consumption. The WM di usion properties, g indicating the existence of a rich-club structure in théwv
including the FA, MD, and AD, exhibited signi cantly higher network (van den Heuvel and Sporns, 2Q1Here, we chose the
values in the pivotal edges compared to the non-pivotal onés (%eakg norm(K), Where the nodes witlk > 14 were considered
ps< 0.0004, permutation testsfigure 2D). Notably, the RDdid  the prain hubs (see Table S2 for results of other thresholtfs)
not show signi cant di erence in EBC between the pivotal andigentj ed 11 network hubs that were primarily located in the
non-pivotal edgesg(D 0.41, permutation test). The pivotal WM pjjateral precuneus, the bilateral orbital part of superianial
edges exhibited signi cantly greater streamline lengtientthe gyrus, the right dorsolateral superior frontal gyrus, thiatsral
non-pivotal ones § < 0.0001, permutation testfF(gure 2B,  cajcarine sulcus, the left middle occipital gyrus, the rigiqerior
and the EBC was positively correlated with streamline |en9tlaccipital gyrus and the bilateral putameRigure 4B). Most of
across edges (SpearmanD 0.29,p < 0.0001) (Table S1), these hubs (72.7%) were structurally connected with the plvot
suggesting that these centrally embedded WM connectiams te gqges. Further, we divided the whole-brain WM connections i
to span longer physical distances. The ratio of EBC to streemli tpyree categories according to the types of nodes they linked (
length, quantifying the communication capacity per unit of yeny Heuvel et al., 20)2rich-club connections between rich-club
streamline length or cost-performance, was signi cantlgher  o4es ¢ D 21), feeder connections between rich-club and non-
in the pivotal edges than the non-pivotal edggs € 0.0001, rich-club nodes § D 142) and local connections between two
permutation test) Eigure 2E). Lastly, we charted the curves for non-rich-club nodesif D 268). Signi cant di erences in EBC
the proportion of edges vs. proportions of EBC and streamlingyere observed among these three edge categdfigsdg) D
length, and found that the pivotal edges (10.8% in numberyy g p D 20 10 8, with a descending order of the
consumed 16.9% of the streamline length but contribute@®%l. rich-club, feeder and local connections (post hoc comparisons,
to the total communication capacity (in terms of EBC) of thepermutation tests, alps < 0.001) Figure 4. Importantly,
whole brain Figure 2F). These results together suggest the costly,e proportions of the number of pivotal WM edges among

but highly cost-e cient signature of the pivotal edges. the three categories, which represents the network building
o ) contribution, were signi cantly di erent [(22) D 735p D
Contributions of the Pivotal Edges to the 1.1 10 8: 57.1% (12/21) within the rich-club connections,
Network Hubs/Rich-Club Structure 19.7% (28/142) within the feeder connections and 3.0% /26
Contribution to the Nodal Properties within the local connectionsHigure 4D). The proportion of EBC

We explored the relationship between the EBC values of WMf the pivotal edges among the three categories, which repiese
edges and their linked nodes' properties (nodal degree, ecie  the network communication contribution, was also signi agn
and betweenness). The pivotal edges had signi cantly greatéierent [ D 2490.3p < 1.0 10 ®4: 83.8% within the
contributions to all three nodal properties than the non-pigbt rich-club connections, 41.4% within the feeder connediiand
ones (allps < 0.0001, permutation testsfigure 3). Moreover, 11.3% within the local connection&igure 45. These results
signi cant positive correlations were found over all threedal  suggest that the rich-club architecture of the brain netkgowas
centralities and across all edges, with the Spearman'slatbore  topologically supported by the pivotal WM edges.
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FIGURE 3 | Contribution of the pivotal edges toward the centr ality of the nodes they linked.  The pivotal edges had signi cantly greater contributions tall
three nodal properties (nodal degree, ef ciency, and betwegness) than the non-pivotal ones. The contribution toward edal centralities of an edge was estimated by
averaging nodal properties of its two linking nodes.

FIGURE 4 | Pivotal edges and the rich-club structure. (A)  The normalized rich-club coef cient8 norm(k) of the group-level WM network was above 1 for a range
of k from 9 to 16. The peak atk D 14 was selected as the hub threshold for further analysigB) The network hubs were mainly located in the medial line of therain
and the connections of the brain network can be further clasised into three categories: rich-club (red), feeder (yellojand local (blue) connections(C) The edge
betweenness centrality values were signi cantly differereamong rich-club, feeder, and local connections(D) The pivotal edges had signi cantly different building
contribution (indicated by the proportion of number) to thee categories of connections.(E) The communication contribution (indicated by the proportin of edge
betweenness centrality), of the pivotal edges was also sigieantly different among three categories of connections. fie center pie illustrates the
building/communication percentage of the three types of conections, and the surrounding pies show the building/commuitation percentage in each category of the
connections. SFGdor, superior frontal gyrus, dorsolatefaCAL, Calcarine ssure and surrounding cortex; L, left; R,ight. For other abbreviations, seerigure 2.

Communication Length and Path Motifs pass through the pivotal edges. The pivotal-edge related
Communication Length of Pivotal Edges paths accounted for 66% of the total communication length
When investigating the shortest paths (i.e., the minimum(communication length of one shortest path was de ned as the
communication block) between any two nodes in the braintotal streamline length of the edges along the path). Speity ca

network, 58% of the paths (4005 in total) were found towhen considering only the pivotal edge related paths, thel tota
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streamline length of these pivotal edges accounted for 6#eof ones p < 0.0001, permutation testsFigure 6A), especially
total communication length, suggesting their high utilivms in  the precuneus-related ber tract3gble 1). Second, we evaluated

brain communication. the topological robustness of the brain networks againsticen
failure and targeted attacks of WM edgé&s(ser et al., 2007; He
Path Motifs of the WM Network et al., 2008 Both the global e ciency and the size of the largest-

Every shortest path between nodes walks through a series @nnected component slowly declined in response to the random
edges, of which the ordered sequence of the pivotal or thfilure; In contrast, these network properties decreasedlhap
ordinary edges on the routes was referred to as the “pathesponse to a targeted attack, with an over 40% reduction when
motifs.” Six types of path motif were identi ed in the whole- 20% of the most centralized edges were attackeglifes 6B,Q.
brain WM network (Figure 5A), and their appearing frequencies These simulation analyses highlight the topological sigmnce
were statistically compared to those of 1000 equivalentgemd of the pivotal WM edges in the global integrity of brain netwerk
networks. The comparison revealed that the paths in the brain
network exhibited signi cantly greater percentages of save Validation Results
pivotal-edge related connection types (e.g., “P; “N-P’PNN,”  We evaluated the reproducibility of our main ndings in severa
and “N-P-N-P; all Zs> 4.4, Figure 5B), especially the non- di erentways, involving thresholds for rich-club, highgelution
pivotal to pivotal to non-pivotal (N-P-N) path motifZ D 23.1). brain parcellations, analyzing individual WM networks, data
Such a path-motif distribution pro le indicates the centradle  from another session and dierent connectivity thresholds
of pivotal edges in the communicational organization of brai during network constructions. We found the main results
circuits. remained unchanged (Supplemental Results, Figures S1-S3,
Tables S2—-S6), indicating a robust reliability of our nding
Path Motifs across Different Brain Systems
Hierarchical clustering analysis of the path motifs acrassent  D|SCUSSION
brain systems revealed four distinct patterns, with gradual
changes from the topologically simplest path motif “N” to We mapped the small proportion of WM connections in human
complex “P” related patterns={gure 5Q): (i) the paths within  whole-brain networks that were highly topologically cetitrad
the frontal and occipital systems in each hemisphere, anth terms of global brain communication. These pivotal WM
several occipital related intra-hemispheric paths mostlyeta connections exhibited higher levels of WM microstructural
through the non-pivotal edges (mean percentage of “N": 89.2%prganization and consumed longer streamline lengths, while
indicating a plainest communication pattern between thesghey topologically contributed signi cantly to the brainlsub
regions; (ii) the pattern with a moderate percentage of motifand rich-club architecture as well as the communication kéc
“N” (61.0%) and a small percentage of motif “N-P” (26.3%)especially in the routes between inter-hemispheric and exgig
was observed in the paths within the parietal, temporal andemote intra-hemispheric systems. Simulation models showed
subcortical systems, and in most of the intra-hemispherighat the integrity of brain networks would decrease sharplgwh
paths; (iii) the pattern with fewer motif “N” (35.8%) but more pivotal edges were under attack. These signatures of pivatal W
“P” related motifs [57.3%, including “N-P” (34.8%) and “N- connections were highly reproducible across individuatans
P-N" (22.5%)] were primarily distributed in the homotopic sessions, spatial scales and network construction strategie
paths between bilateral frontal systems and heterotopic paths
related to frontal and occipital systems; and iv) the lasSpatial Distribution of Pivotal WM
pattern with mostly the “P” related motifs [88.4%, including Connections
“P" (11.6%), “N-P” (47.5%), and “N-P-N" (29.3%)] primarily We found that di erent WM tracts play heterogeneous roles
existed in the homotopic and heterotopic paths among bilatergh global information communication in brain networks. The
parietal, temporal and subcortical regions. These ndinggg®@st most centralized WM connections were primarily located in
that the path motifs are distinctively di erentiated in their several major long-range WM pathways, such as the corpus
communication across di erent brain systems: the heterotopi callosum, cingulum and inferior fronto-occipital fasciosl
systems between hemispheres and extremely distant intrgzhich are the vital communication lines across regions to
hemispheric systems (e.g., between frontal and occipit®®3  support human cognition. For instance, one third of the pivotal
tend to adopt the pivotal related paths, while other intra-edges belonging to the inter-hemispheric connections kxtat
hemispheric systems tend to use plain communication patternsin the corpus callosum, which coordinates numerous funcion
integrations processes including perception, attention, roem
Lesion Simulations language and reasonings@zzaniga, 2000The cingulum that
Two simulation strategies were used to evaluate how a figsio connects medial frontal, parietal and temporal systems, is the
of the pivotal WM edges in uenced brain network performance.principal route of the default mode networkG(eicius et al.,
First, we calculated the vulnerability of each edge in the WM2009, damage to which is associated with various cognitive
network, which was de ned as the change in the global e cignc impairments (Vietzler-Baddeley et al., 2015everal projection
of the network after eliminating this edge from the wholeabr  tracts are also topologically centralized, involving bériking
network (Costa et al., 2007Not surprisingly, the pivotal edges the subcortical nuclei such as the putamen, the thalamus and
showed signi cantly greater vulnerability than the non-ptal  the caudate nuclei, which are hubs of the human WM networks
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FIGURE 5 | Path motifs of the whole-brain WM network and of differ ent brain systems. (A) Examples of the six types of path motifs in the whole-brain WM
network. Path motifs were de ned as the ordered sequence of tle pivotal or the non-pivotal edges on the routes of each shoest path. N, non-pivotal edge; P, pivotal
edge. (B) The frequency percentage and normalized distribution of gh motifs derived by comparing the actual frequency of each ath motif to that of 1000
equivalent random networks. The “non-pivotal to pivotal tsmon-pivotal” (N-P-N) path motif was the most frequent path rotif in the brain network Z D 23.1). (C) The
bottom matrix shows the proportions of path motifs between ech pair of the brain systems. The following hierarchical e$tering analysis revealed four path-motif
distribution patterns, of which the path motif “N” decreasel gradually while the “P” related path motifs constantly acemulated. Notably, most within-system and intra
hemispheric paths communicated with the style “N,” while tk inter-hemispheric paths, especially paths between hetetopic systems, utilized the pivotal edges more
often. Fro, frontal; L, left; Occ, occipital; R, right; Paiparietal; Tem, temporal; Sub, subcortical; IntraHemi, inérhemispheric; InterHemi, inter hemispheric.

(van den Heuvel and Sporns, 2011; Crossley et al.)#dlare  and AD values than non-pivotal ones, which was mainly driven
involved in various brain functionsBurgess et al., 2002; Packardby the higher AD value in pivotal WM tracts. Such results might
and Knowlton, 2002; Kunimatsu and Tanaka, 2D1Brom an re ect more orderly ber organization, greater axonal diateg
anatomic embedding perspective, these WM tracts, especialprger packing densities, higher proportion of myelinated raxo
the posterior cerebral WM, have also been demonstrated to kaf these pivotal edge8ésser, 1995; Beaulieu, 2)(he pivotal
more involved in the construction of the brain network as theedges also showed greater physical consumption, indicated by
voxels within these regions had more network edges passiggreamline length, suggesting an extraordinary wiring dost
through them Qwen et al., 2005 Together, these pivotal WM building these topologically centralized shortcuts thailf@te
connections provide critical high-throughput communicatio the link across distant brain regions. Intriguingly, the iun
channels or shortcuts between cortical and subcorticabrey communication capacity (dividing EBC by streamline length)

) o is higher for pivotal edges, indicating their rewarding lolirig
The WM Microstructural Organization and cost. Together, the high-level microstructural organizatand
Wiring Cost of the Pivotal WM Connections longer axonal bers empower these pivotal edges to have faster
The pivotal WM connections showed higher levels ofcommunication routes with shorter transmission delays jalth
microstructural organization, as indicated by greater F4D, consequently facilitate synchronous information procegsin
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FIGURE 6 | Vulnerability of the pivotal edges and lesion simul  ation. (A) The pivotal edges showed signi cant greater vulnerabilityan the non-pivotal ones. The
error bars represent the standard deviation(B) The global ef ciency and(C) the size of largest connected component slowly declined intte random failure. When
facing the targeted attacks, these network properties deazased rapidly (over 40%) after the top 20% edges were removed

increase signal transfer robustness and reduce noise glurimowlson et al., 2003 The rich-club organization is biologically
communication (aughlin and Sejnowski, 2003; Kaiser andcostly in terms of metabolism and wiring cost but provides
Hilgetag, 2006; Collin et al., 20)L4rhis phenomenon, wherein functional bene ts by enhancing both the global information
a small number of high-quality and long-range pivotal edgesow and the resilience of the network to hub attacksa( den
consume substantial resources to ensure high levels of botfeuvel and Sporns, 2011; van den Heuvel et al., R(Hére,
local and global information integration of the brain, proes from a perspective of network edges, we showed signi cant
additional support for the concept of cost-e ciency balance ofcontributions of the pivotal WM connections to either the

neural circuitry formation Bullmore and Sporns, 20).2 building number or the communication load within the rich-

club architecture, suggesting that the pivotal WM conneausio
Contributions of the Pivotal Edges toward facilitate the communication in the rich-club. Notably, sem
the Network Hubs/Rich-Club Architectures pivotal connections were those feeder connections linkingsh

The pivotal edges had a signicantly greater contributionand non-hubs, re ecting their key roles in guiding and shing
to nodal topological properties than the non-pivotal ones.of information ow around the communication cores.
Biologically costly hubs are supposed to generate and process. . . . .
massive signals to achieve the functional integratimcns ~ Utilization of the Pivotal WM Connections
etal., 2007; Buckner et al., 2009; Liang et al., 2013; Tenasj i Communication Strategy
2013; van den Heuvel and Sporns, 20 Nearly 80% of pivotal One particularly intriguing nding here is that the
WM connections were directly linked with hubs. These pivotalcommunication blocks (i.e., the shortest paths) in the brain
WM connections with high-throughout transfer capabilityldd  network are mainly associated with pivotal edges: the popular
ful Il the communicational requirement of the hubs and fimer  communication motif follows a route sequence of edges,
nourish their developments. In fact, a signicant positivewhere signals pass through increasingly centralized edges
correlation between nodal centrality and the anatomicatalice and then decreasing centrality (following an “N-P-N" path
of edges has been reported¢xander-Bloch et al., 2013; Crossleymotif), indicating the pattern of rst traveling on a side rda
et al., 201% The associations between the edge-betweenneggen turning onto highways, and nally leaving the arterial
centrality and nodal centralities observed here provide enortra c. Interestingly, van den Heuvel et al. (201Z2xamined
direct evidences for the interactive nexus between pivatges the relationship between the shortest communication paths
and brain hubs. Furthermore, approximately 20% of the pivotahnd the rich-club architecture, and revealed a “zooming-
WM edges connect non-hub regions. Such organization pro le®ut/zooming-in” structure of shortest paths by which thersids
avoid the over-aggregation of pivotal WM connections andfed into, traversed, and exited the rich-club. They conteshd
formation of dominating clusters that shoulders extremiglsge that this pattern is an expression of the degree-based “greedy
communication loads. While clusters with extremely hugade routing” (Kleinberg, 200p navigation strategy, an e cient
could be consumptive and vulnerable to pathogenic processeymmunication scheme in technology and transportation
the distributed localization of pivotal edges may help lduac networks in which the travel paths are selected only on the
compensation mechanism in cases of disease. basis of local information without the knowledge of the glbba
Recent studies have identi ed signi cantly denser connaasi  topography of the networkgimsek and Jensen, 2008; Boguna
between hub regions compared with non-hub regions, forminget al., 200R Information about the global brain structure
a rich-club core architecture in the structural brain netlke in  is probably absent from the local neurons or brain regions;
humans (an den Heuvel and Sporns, 2Q1dand other species therefore, sending information to distant targets by travgl
(Harriger et al., 2012; de Reus and van den Heuvel, 2013thirough the topologically centralized WM connections foeth
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spreading possibility could be an optimal path. Notably, we als@00§, and ActiveAx flexander et al., 20)0and other MR
observed diverse communication path motifs across di erentontrast mechanisms such as quantitative magnetizatemstier
brain systems: inter-hemispheric paths communicating brainmaging Sled and Pike, 2001; Cercignani and Alexander, 006
systems are more dependent on pivotal WM connections thamight provide more accurate microstructural information.
intra-hemispheric within- or between-system paths; path rfisoti Third, relating the functional characteristics (e.g., dymics and
of the parietal or subcortical regions are far more complexcausality) Hiltunen et al., 2014; Zalesky et al., 2o pivotal
than those of the systems with homogeneous and/or primargdges in functional networks to the pivotal WM connections
functions (e.g., occipital). These patterns inspire new goest is important for understanding the possible mechanisms of
about exactly how speci ¢ path motifs are related to the types oftructural and functional coupling. Fourth, incorporating
functions of a particular system. computational modeling approachesi¢ney et al., 2009; Raj
In summary, our ndings provide crucial evidence for the etal., 2012; Vertes et al., 2012; Deco et al.,)d6felthe analysis
mechanisms underlying e cient communication strategias i of pivotal WM connections can further emulate their topologlic
human WM networks: investing in a “highway” system andproperties in an empirical situation. Conversely, optimizing
utilizing it in the support of hubs, rich-club structures, and the model parameters by taking into account the physical and
most-prevalent path-motifs. Such ndings demonstrate a speci topological characters of pivotal WM connections might help
manifestation of the cost-e ciency principle in brain WM design arti cial networks. Finally, a simulation “lesioahalysis
networks and deepen the understanding of signal exchanggas performed here to evaluate the topological in uences ef th

patterns across regions. pivotal edges on global brain communication. Real disease data

are desirable to ascertain how brain lesions located in pivot
Limitations and Further Considerations WM connections a ect the topological performance of brain
Several methodological limitations ~ warrant  further networks and subsequently cognitive dysfunctions.

consideration. First, diusion tensor imaging in assocthte

with inaccuracies in resolving crossing bers and sharpAUTHOR CONTRIBUTIONS

angulations of tracts\/edeen et al., 2008which could lead to

false-negatives in tracing for long-range bers and fgesitive MX, YB, and YH: designed research; MX, QL, YB, and YH:
connections between nearby regions. We applied a higher Rperformed research; MX, QL, and YH: contributed analytic $pol
threshold (0.2) in ber tracing to minimize possible artifact MX, QL, and YH: analyzed data; and MX, YB, and YH wrote the
due to the acquisition and tractography noise. However, th@aper.

unbalanced numbers of long- and short-range connections

might overestimate the importance of long-range conneaion ACKNOWLEDGMENTS

and result in the increase of FA of pivotal edges due to the
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