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Abstract

A critical way for humans to acquire information is through language, yet whether and how language experience drives specific
neural semantic representations is still poorly understood. We considered statistical properties captured by 3 different computational
principles of language (simple co-occurrence, network-(graph)-topological relations, and neural-network-vector-embedding relations)
and tested the extent to which they can explain the neural patterns of semantic representations, measured by 2 functional magnetic
resonance imaging experiments that shared common semantic processes. Distinct graph-topological word relations, and not simple
co-occurrence or neural-network-vector-embedding relations, had unique explanatory power for the neural patterns in the anterior
temporal lobe (capturing graph-common-neighbors), inferior frontal gyrus, and posterior middle/inferior temporal gyrus (capturing
graph-shortest-path). These results were relatively specific to language: they were not explained by sensory-motor similarities and
the same computational relations of visual objects (based on visual image database) showed effects in the visual cortex in the picture
naming experiment. That is, different topological properties within language and the same topological computations (common-
neighbors) for language and visual inputs are captured by different brain regions. These findings reveal the specific neural semantic
representations along graph-topological properties of language, highlighting the information type-specific and statistical property-
specific manner of semantic representations in the human brain.
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Introduction
A typical adult human brain stores the meanings
(semantics) of approximately tens of thousands of
words (42,000 for typical English-speaking Americans)
(Brysbaert et al. 2016), which allows naming objects and
actions, understanding and producing sentences, and
contributing to various kinds of reasoning. Decades of
neuroimaging and neuropsychological literature have
studied the cognitive neural representations of semantic
knowledge, reaching the consensus that they are derived
from, and grounded in, sensory experiences distributed
across multiple sensory association cortices (Martin et al.
1995; Miceli et al. 2001; Fernandino et al. 2016), with those
sharing physical properties (sensory/motor experiences)
represented more closely in corresponding brain regions
(Peelen et al. 2014; Aflalo et al. 2020; Wang et al. 2020).
Even though rich knowledge can be acquired through
language (e.g. reading or hearing the sentence “roses

are red”), it has been commonly assumed that such
language-derived knowledge is still grounded in sensory-
derived representations (the visual perception system
for seeing the color red) (Patterson et al. 2007; Barsalou
2008; Binder and Desai 2011; Barsalou 2016; Binder 2016;
Binder et al. 2016; Martin 2016).

The specific role of language in deriving neural
semantic representations beyond sensory-motor expe-
riences has only recently been highlighted, motivated
by the empirical findings that word meanings can
be constructed in the complete absence of sensory
experience (e.g. color and other visual concepts in
congenital blindness) (Saysani et al. 2018; Bedny et al.
2019; Kim et al. 2019; Wang et al. 2020). The neural
correlates of such nonsensory, presumably language-
derived, knowledge have been identified in the dorsal
part of the anterior temporal lobe (ATL) (Striem-Amit et
al. 2018; Wang et al. 2020), which is part of a language
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network and functionally connects with the other
language-sensitive frontal–temporal cortices (such as
the inferior frontal gyrus (IFG), the posterior part of
the middle temporal gyrus (pMTG)) (Fedorenko et al.
2010). This set of regions, especially ATL, IFG, and pMTG,
also tend to show stronger sensitivity to abstract words
than concrete words (Noppeney and Price 2004; Binder
et al. 2009; Wang et al. 2010; Hoffman et al. 2015),
corroborating their potential functionality of supporting
language-derived semantic representations.

What are the mechanisms by which language expe-
rience drives semantic representations in the human
brain? Language is a highly rich faculty with a myriad
of distinct processes. One parsimonious candidate is
statistical properties. Using behavioral studies combined
with computational modeling, ample evidence has
shown that humans, during both development and
adulthood, are sensitive to two main types of statis-
tical patterns in language, including local statistical
regularities, and global network patterns, which provide
powerful computational mechanisms for various types
of semantic relations to form (Romberg and Saffran
2010; Aslin and Newport 2014; Karuza et al. 2016; Lynn
and Bassett 2020; Unger and Fisher 2021). Classical
statistical learning studies show that humans can detect
variations in local statistical regularities such as (first-
order) simple co-occurrence (Fig. 1a and b, left panel)
and/or transitional probability (Saffran et al. 1996;
Schapiro et al. 2012), which is particularly salient in
language acquisition (Saffran et al. 2001; Conway and
Christiansen 2005). Recent studies further highlighted
the effects of (higher-order) global network topological
patterns in human language and/or knowledge learning.
In the framework of network sciences (Cong and Liu 2014;
Jackson and Bolger 2014), language can be constructed
as a complex network (graph), with words as nodes
and their simple co-occurrences as edges (Fig. 1b). Once
represented as a graph, rich topological properties
(node and edge layout patterns) can be computed to
capture the local and global communication patterns
that have been shown to affect human knowledge
and/or language learning. For instance, humans can
implicitly infer shared co-occurrence patterns (graph-
common-neighbors) and path distance (graph-shortest-
path) in various structural learning tasks, such as
visual event segmentation (Schapiro et al. 2013), motor
sequence learning (Lynn et al. 2020), and object relation
learning (Yermolayeva and Rakison 2016; Garvert et
al. 2017). These types of global topological patterns
from language inputs have also shown to effectively
predict semantic similarity ratings (graph-common-
neighbors; Jackson and Bolger 2014) or reaction times of
word-pair relatedness judgment (graph-shortest-path;
Kenett et al. 2017). In contrast to these two types of
computational properties (local and network topological)
that are mathematically transparent, recent natural
language processing (NLP) models exploit the higher
order statistical patterns of language by neural network

(NN) learning methods, representing words by vector
embedding obtained by model fitting (e.g. word2vec,
Mikolov et al. 2013; GloVe, Pennington et al. 2014) and
word relations (commonly) by geometric distance (e.g.
cosine distance) in the resulting vector-embedding space
(Fig. 1c). Although this vector-embedding space has also
been shown to be correlated with human behavioral
patterns such as semantic similarity ratings (Baroni et
al. 2014; Pereira et al. 2016), its interpretability is opaque
(Levy et al. 2015; Lenci 2018; Kumar 2021).

More direct evidence about how the neural system
derives semantic representations from computing
statistical properties of language inputs comes from
neuroimaging studies that examine whether the brain
responses to word meanings respect their statistical
patterns captured by a particular computation model
of the language corpora. The rationale is similar to that
of classical cognitive computational modeling. If the
“simulation” pattern of a computation model fits the
observed pattern better than control models, then it
provides a stronger candidate for explaining the com-
putational mechanisms of the system of interest (here,
a particular neural unit). A series of studies have shown
that word relations computed from co-occurrence-based
or NN-derived vector embedding correlate with word
relations computed from brain activity patterns: with
neural activity in distributed brain regions (count model,
Huth et al. 2016; Mitchell et al. 2008); (GloVe model,
Pereira et al. 2018; Anderson et al. 2019); and with the
brain activity patterns of more specialized language
processing regions/networks (word2vec, Wang et al. 2018;
Carota et al. 2021). These models examined in these
imaging studies aggregate multiple types of statistical
regularities, with word relational structures constructed
from various models correlating with each other and
with nonlinguistic sensory properties (e.g. “cat” and “dog”
are closely related in both verbal and visual relational
patterns) (see Baroni et al. 2014; Lewis et al. 2019;
Utsumi 2020). It is unknown whether the mathematically
transparent statistical regularities, simple co-occurrence
and network-(graph)-topological properties of language,
which have been highlighted in explaining human
behavioral patterns (Saffran et al. 1996; Jackson and
Bolger 2014; Yermolayeva and Rakison 2016; Kenett et
al. 2017), are captured by specific neural systems.

To test what types of computation of language statis-
tical properties are better candidates to model the prin-
ciples of the human brain’s semantic representations,
we systematically compared the effects of three types of
language computational principles, theoretically and/or
empirically motivated by developmental and adult
behavioral and functional magnetic resonance imaging
(fMRI) studies, in fitting brain activity patterns: sim-
ple co-occurrence, network-graph-topological (graph-
common-neighbors and graph-shortest-path), and NN-
derived vector-embedding (Fig. 1). For NN-derived vector-
embedding models, word2vec (cosine distance) was
tested because of its popularity and good performance
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Fig. 1. Construction of various language computation models for word (meaning) representations. (a) Word co-occurrence regularities, extracted from
the Chinese web Google n-gram corpora (Liu et al. 2010; window size = 2). (b) Network-(graph)-topological relations. A word graph is constructed by
having 83,007 unique Chinese words in the corpora as nodes and normalized raw word co-occurrence values in the corpora as edges (34,586,840 edges
with positive PMI values). The edge values reflect the local proximity between two words in a graph space; common neighbors and shortest paths are
then computed, reflecting words’ commonality in a local community (graph-common-neighbors) and the closest transitional distance between 2 words
(graph-shortest-path), respectively. Mathematical formulas for the computations are shown below (see Methods for detailed information). (c) Neural-
network-vector-embedding relations. In the word2vec model, words are represented as 300-dimensional vectors and word relations are computed as
cosine distances between these vectors. A pretrained and open-access word2vec model was adopted (Li et al. 2018). (d) RDMs of the 95 words used in
the fMRI experiments, in which each cell represents the distance measure for a given word pair based on language computation models in (b) and (c).
Numbers indicate the Spearman’s correlation coefficients among these four RDMs; ∗, P < 0.05, Bonferroni corrected.

in fitting both behavioral and neural data (Baroni et
al. 2014; Pereira et al. 2016; Wang et al. 2018). For 95
words, we computed word-pair distances along these
four measures based on large-scale language corpora. To
measure brain activity supporting word semantics, we
conducted 2 fMRI experiments with varying input/output
modalities but shared semantic processing of these
95 words and looked at the conjunction effects: a
word production fMRI experiment (oral picture naming,
entailing visual object recognition, semantic access,
and phonological encoding/oral output) and a word
recognition fMRI experiment (word familiarity judgment,
entailing visual word recognition, semantic access,
and button press). Representation similarity analysis
(RSA) (Kriegeskorte, Mur and Bandettini 2008) was used
to locate the neural circuits that are organized by
specific language statistical properties, controlling for
multiple types of potential confounding variables (e.g.

task peripheral, sensory-motor). Finally, to examine the
universality/specificity of the observed word neural
computations (language vs. nonverbal vision), the effects
of graph-topological properties of visual object co-
occurrence statistics derived from a large visual image
database were evaluated.

Materials and methods
Participants
Twenty-nine participants (19 females; median age,
20 years; range, 18–32 years) were recruited in our
study and were scanned in 2 fMRI experiments on
separate days. All participants were right-handed native
Mandarin Chinese speakers with normal or corrected-
to-normal vision and had no history of neurological or
language disorders. One hundred online participants
(71 females; median age 21 years; range, 18–26 years)
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were recruited in the behavioral experiments of sensory-
motor attribute similarity judgment. They provided
written informed consent. This study was approved
by the institutional review board of the State Key
Laboratory of Cognitive Neuroscience and Learning,
Beijing Normal University (ICBIR_A_0040_008), adhering
to the Declaration of Helsinki for research involving
human subjects. For the fMRI experiments, 3 participants
in the oral picture naming experiment and 3 participants
in the word familiarity judgment experiment were
excluded from the data analysis due to successive head
motions (>3 mm/3◦). Another 6 participants in the
word familiarity judgment experiment were excluded
because of relatively poor behavioral responses (>20%
nonresponsive trials in more than one run). Therefore,
the fMRI data of 26 participants in the oral picture
naming experiment and 20 participants in the word
familiarity experiment were analyzed.

Stimuli
Ninety-five objects were selected in our fMRI exper-
iments, including 3 common categories (32 animals,
35 small manipulable artifacts, and 28 large nonma-
nipulable artifacts). In 2 separate fMRI experiments,
objects were shown as words and colored pictures (see
Supplementary Fig. S1 and Table S1 for details). Pictures
were 400 × 400 pixel images with the representative
exemplar of the object presented against a white
background (10.55◦ × 10.55◦ of visual angle). Words were
presented in white FANG SONG font against a black
background and subtended approximately 7.92◦ × 2.64◦

of the visual angle.

Computation of language models
Three major types of language computational principles
were adopted to extract 4 kinds of statistical patterns
between words: word simple co-occurrence relations,
network-(graph)-topological (graph-common-neighbors
and graph-shortest-path) relations and word2vec-
derived vector-embedding relations. Pairwise distances
between 95 objects were derived from these 4 measures
to construct the theoretical representational dissimilar-
ity matrices (RDMs) for the subsequent RSA computation
with the neural data.

Construction of the PPMI-normalized simple co-occurrence
matrix

Raw word co-occurrence counts were first collected in
the Chinese Web Google n-gram corpora (https://catalog.
ldc.upenn.edu/LDC2010T06) (Liu et al. 2010). The cor-
pora included publicly accessible documents (a total of
882,996,532,572 tokens, 1,616,150 unique tokens includ-
ing 864,629 unique Chinese words) on the Chinese inter-
net by the end of 2008. In this dataset, n-grams within
a context window ranging from 1 to 5 were extracted
by the original developer using an auto segment parser.
Bigram word co-occurrence counts were used in the
main results. We also calculated our measures based on

tri-gram, four-gram, and five-gram word co-occurrence
counts in the validation analyses. To reduce the compu-
tational loads and filter low-frequency and meaningless
words, we further selected the keywords based on a
human annotated Chinese Knowledge Database (Open-
HowNet, 127,266 unique Chinese words by the end of Jan-
uary 2019) (Qi et al. 2019), resulting in 83,007 unique Chi-
nese words. In the validation analysis, we also adopted
different keyword selection methods based on different
word frequency ranges and calculated the co-occurrence
counts using the top 15%, 20%, 25%, and 50% most fre-
quent words of a total of 864,629 Chinese word samples.
Validation analyses of window size choice, matrix size,
and keyword selection methods are presented in detail
in the Supplementary Materials.

Importantly, pointwise mutual information (PMI)-
normalized word co-occurrence counts between two
words, u and v, were adopted to construct the 83,007
× 83,007 simple co-occurrence matrix, which reflects
the direct proximity between 2 words in long-term
language exposure (Church and Hanks 1990). There were
34,586,840 edges with positive PMI values (PPMI; see (1))
and the values of weak links (i.e. those with negative
PMI values) were set to zero, i.e. having no connection,
given that the negative PMI values might introduce
“uninformative” noise (Levy and Goldberg 2014).

PPMI (u, v) = max
(

log
P (u, v)

P(u)P(v)
, 0

)
(1)

Construction of the graph topological relations

To calculate graph-related distances, 83,007 words in
the word co-occurrence PPMI matrix were taken as
nodes, and word-pair PPMI values were taken as edges to
construct the word graph space (see above). Considering
that between-word relations in the graph space are
remarkably rich, we mainly considered 2 graph-related
measures based on current knowledge and algorithms
from graph theory and semantic network practice
(Newman 2001; Liben-Nowell and Kleinberg 2007; Lü
and Zhou 2011; Jackson and Bolger 2014): the Jaccard
similarity coefficient of common neighbors (graph-
common-neighbors) and the shortest path distance
(graph-shortest-path). For a given word pair, the Jaccard
similarity coefficient of common neighbors was calcu-
lated as the summed PPMI weights of their shared edges
of neighbors divided by the summed PPMI weights of
union edges of neighbors connected with two words,
which reflects the second-order proximity between the
2 words (Jackson and Bolger 2014). Precisely:

SJaccard (u, v) =
∑

w∈nu∩nv (PPMI (u, w) + PPMI (v, w))∑
w∈nu∪nv (PPMI (u, w) + PPMI (v, w))

(2)

where nu is the set of nodes that are neighbors of node u.
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For the calculation of weighted shortest path distance
(Newman 2001), we summed weights along the shortest
path between 2 words in a graph-defined space with
inverted PPMI using Dijkstra’s algorithm in Neo4j (http://
neo4j.com/). The measure was precisely calculated as
follows:

L (u, v) = min
∑

u,v,ni,nj

1
PPMI (u, ni)

+ . . .
1

PPMI
(
ni, nj

)

+ . . .
1

PPMI
(
nj, v

) (3)

Notably, both first-order edges and common neigh-
bors measure the similarity between 2 words, while the
weighted shortest paths measure the distance between
two words. In the following analysis, we converted the
former 2 into dissimilarity representations using a 1
minus calculation to obtain the corresponding RDMs.

Another proximity measure between words is Katzβ

(communicability), which is calculated from ensembles
of all paths with a damping factor β to discount the
path weights. We did not consider this measure for the
following reasons: (1) it is computationally expensive to
calculate the global sums over the collection of all paths
given the high degree of interconnection in the language
graph; (2) the selection of dumping factor β is usually
arbitrary and unexplored; and (3) the measure is similar
to common neighbors when β is very small (Liben-Nowell
and Kleinberg 2007).

Note that the graph-related measures we adopted here
were based on the weighted version of graph space (i.e.
the edge in the graph was a PPMI-normalized word co-
occurrence value) to preserve as much statistical infor-
mation as possible. In a validation analysis (see Sup-
plementary Materials), we also calculated graph-based
measures with the binary version (the edges with PMI
greater than 0 were coded as 1, and other edges were
coded as 0).

Construction of the word2vec vector-embedding relation

Another way to extract language statistical information
is to project the word co-occurrence statistics in a hidden
layer space using word embedding techniques. In this
study, we adopted a pretrained, open-accessed word2vec
vector-embedding dataset that achieved state-of-the-art
performance on analogical reasoning of Chinese seman-
tic relations (Li et al. 2018). Large mixed corpora (4037
million words) were selected from Baidu Encyclopedia,
Chinese Wikipedia, People’s Daily News, Sogou News,
Financial News, Zhihu_QA, Weibo, and 8599 modern Chi-
nese literature books. The basic parameter settings of
this model were as follows: dynamic window size = 5, sub-
sampling rate = 10−5, negative sample number = 5, iter-
ation = 5, low-frequency word = 10, dimension = 300. The
skip-gram architecture (Mikolov et al. 2013) was adopted
to predict the surrounding context words given an input
target word. After intensive training and prediction, each

word was represented as a 300-dimensional vector, and
word relations were calculated as the cosine distance of
these vectors. In addition to this pretrained w2v model,
in a validation procedure we also repeated the analyses
on a word2vec model trained on the same corpora that
were used for calculating the edge and graph-related
measures (see Supplementary Materials for details).

Computation of visual models
To examine whether our findings of language computa-
tion models were specific to language inputs or reflect
domain-general computations for any kind of statistical
co-occurrence pattern, we considered another kind of co-
occurrence—visual co-occurrence statistics—which was
collected based on an image database, VisualGenome
(http://visualgenome.org/) (Krishna et al. 2017). The
image database consisted of 108,077 images; objects in
each image were annotated by human observers, and
the labels were further mapped to Wordnet synsets. We
first extracted the unique labels across the database
(82,494 objects in total). The co-occurrence counts
between objects were first obtained for each image
and then summed over all images to obtain the raw
object co-occurrence matrix. Similar to the language
graph representation, we further constructed visual
models using the same measures: visual edge (PPMI
value, yielding 3,920,082 positive visual co-occurrence
relationships), visual graph-common-neighbors and
visual graph-shortest-path. RDMs were constructed
accordingly.

Control RDMs
We constructed the following control RDMs:

Low-level stimulus & response properties: (1) low level visual
similarity: To control for the low-level visual similarity
effects between pictures/words, we calculated the pixel
and gist dissimilarity of image pairs and the pixel dis-
similarity of word pairs separately. The pixel dissimilarity
was computed by Pearson’s correlation distance between
the grayscale values of images. The gist dissimilarity was
computed by the Euclidean distance of 32 visual features
of images (4 kinds of frequency, 8 kinds of orientation)
(Oliva and Torralba 2001). (2) Word phonological similar-
ity: Even though the word familiarity experiment did
not explicitly require phonological output, there might
still be automatic phonological access. To control for
the effects of phonological similarity, we calculated the
phonological dissimilarity for each word pair. Chinese is
a syllabic language, with most words containing 2 sylla-
bles, and each syllable comprises an onset (consonant)
and a rhyme (simple or complex vowel). We constructed
the phonological RDM by calculating 1 minus the propor-
tion of shared subsyllabic units (onset or rhyme) between
each word pair (Fang et al. 2018). (3) Response similarity:
A button-press RDM was constructed to control for the
effects of motor responses in the word familiarity judg-
ment task, computed as the absolute difference between
the group-averaged button press responses (1 for left
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index finger, familiar; 0 for left middle finger, unfamiliar)
collected during scanning.

Nonlinguistic (sensory-motor) knowledge properties: Given
the correlation between language and nonlinguistic
structures (“cat” and “dog” tend to co-occur in language
and in visual scenes and share sensory similarities), we
carefully considered the effects of nonlinguistic sensory-
motor properties, semantic domain membership, and
visual object co-occurrence statistics: (1) For sensory-
motor attribute RDMs, 5 sensory-motor attributes, includ-
ing shape, motion, color, sound, and manipulation, were
chosen based on the classical sensory-motor accounts
of semantic neural representations (Binder et al. 2016;
Fernandino et al. 2016). The dissimilarity structures of
the 95 words on each of these attributes were collected
from 100 college students (20 subjects per attribute)
using the multiarrangement method (Kriegeskorte and
Mur 2012), in which subjects were asked to arrange 95
word stimuli on a computer screen according to their
distances along each attribute. The group-mean RDM
was obtained by averaging across individual subjects’
RDMs to serve as the control RDMs. (2) For the semantic
domain membership effects, we constructed a binary
RDM indicating whether the words belong to the same
semantic domain, including animals, small manipulable
objects, and large nonmanipulable objects; 0 means they
are in the same semantic domain, 1 means they are not
in the same semantic domain. (3) For nonverbal visual
object co-occurrence statistical properties, the visual graph
RDMs computed in the previous section were used.

fMRI experimental design
We adopted a condition-rich event-related fMRI experi-
mental design to estimate the hemodynamic responses
for each item (Kriegeskorte, Mur and Bandettini 2008).
Two experiments were carried out: an oral picture nam-
ing experiment and a word familiarity judgment exper-
iment. In the oral picture naming experiment, partici-
pants were instructed to overtly name the objects in col-
ored pictures as precisely and quickly as possible. In the
word familiarity judgment task, participants were asked
to judge whether the presented written name of objects
was familiar according to their personal experience by
pressing the corresponding buttons (familiar: left index
finger; unfamiliar: left middle finger).

The 2 experiments were conducted separately on 2
days for each participant, and the word familiarity judg-
ment experiment was always carried out before the oral
picture naming experiment to avoid eliciting the visual
imagery of the object in the word experiment. Each exper-
iment had 6 runs, with each word/picture repeated 6
times. Each run (8 min 48 s) consisted of 95 trials, and
each word/picture was presented exactly once. In each
trial, there was 0.5-s fixation and 0.8-s stimulus presen-
tation, followed by the intertrial interval (ITI) ranging
from 2.7 to 4.7 s. For the order of stimuli and length of
ITI, we first determined the sequence of the 3 categories

using the optseq2 optimization algorithm (http://surfer.
nmr.mgh.harvard.edu/optseq/) (Dale 1999) and further
randomized the order of items in each category. Each
run began and ended with a 10-s fixation period. The
presentation and timing of stimuli was implemented
using E-prime 2 (Psychology Software Tools) (Schneider
et al. 2002).

Image acquisition
Functional and structural MRI images of 2 experiments
were collected for each participant using a 3 T Siemens
Trio Tim Scanner at the Beijing Normal University MRI
Center. A high-resolution 3D structural image was col-
lected with a 3D-MPRAGE sequence in the sagittal plane
(144 slices, TR = 2530 ms, TE = 3.39 ms, flip angle = 7◦,
matrix size = 256 x 256, voxel size = 1.33 × 1 × 1.33 mm).
Functional images were acquired with an echo-planar
imaging (EPI) sequence (33 axial slices, TR = 2000 ms,
TE = 30 ms, flip angle = 90◦, matrix size = 64 × 64, voxel
size = 3 × 3 × 3.5 mm with a gap of 0.7 mm).

Image data analysis
Preprocessing

Task-fMRI data were preprocessed and analyzed for
each experiment using Statistical Parametric Mapping
(SPM12; http://www.fil.ion.ucl.ac.uk/spm). For each
individual participant, the first 5 volumes (10 s) of
each run were discarded for signal equilibrium. The
preprocessing of functional images included slice timing
correction and head motion correction, and the resulting
unnormalized and unsmoothed images were entered
into general linear models (GLMs). The structural images
were segmented into different tissue types; the resulting
gray matter probabilistic images were coregistered to the
mean functional image in the native space, resliced to the
spatial resolution of functional images, and thresholded
at one-third to obtain the gray mask of each subject. The
forward and inverse deformation fields of each subject’s
native space to the Montreal Neurological Institute (MNI)
space were also obtained at this step.

GLM

For the functional images in the native space in each
subject, GLM was built to obtain object-level neural acti-
vation patterns. The GLM contained onset regressors for
each of 95 items, 6 regressors of no interest correspond-
ing to the 6 motion parameters, and a constant regressor
for each run. All trials were included, as we did not
record the behavioral responses in the picture naming
task due to technical limitations, and only a small pro-
portion of trials were omitted in the word familiarity
judgment experiment (mean = 1.47%, SD = 0.94%). Each
object regressor was convolved with a canonical HRF, and
a high-pass filter cut-off was set as 128 s. Additionally,
to ensure the maximal coverage of regions with a low
ratio of signal-to-noise (e.g. ATL), the SPM implicit mask
threshold was set to 10% of the mean of the global signal
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(compared with the default threshold of 80%) (Devereux
et al. 2013). For each experiment, the t value images (each
condition relative to baseline) were obtained to capture
the neural activation patterns.

RSA
Whole-brain searchlight analysis

To identify the brain regions that may represent different
language computation models, we carried out RSA
using a searchlight procedure (Kriegeskorte et al. 2006;
Kriegeskorte, Mur and Bandettini 2008). For each voxel
in the gray matter mask in the native space, the t
values of 95 objects within a sphere (radium = 10 mm)
centered at that voxel were extracted and correlated
across object pairs to create the 95 × 95 neural RDM
using Pearson’s correlation distance. The neural RDM
was then compared with language-computation-model-
based RDMs using partial Spearman’s rank correlation
to obtain the “raw effects” of each language-model
RDM (controlling for low-level control RDMs: pixel
RDM, gist RDM, and phonological RDM in the oral
picture naming experiment; pixel RDM, phonological
RDM, and button-press RDM in the word familiarity
judgment experiment), and further controlling for
other language statistical models to obtain the “unique
effects” of each model. The resulting r values were
assigned to the center voxel of the sphere, and the
searchlight procedure across each gray matter voxel
produced a gray matter r map for each participant.
These individual r maps were Fisher-z transformed,
normalized into the MNI space, and spatially smoothed
using a 6 mm full-width half-maximum Gaussian
kernel.

For group-level random-effects analysis, one-sample
t tests were performed across the individual r maps
using permutation-based statistical nonparametric
mapping (SnPM13; https://go.warwick.ac.uk/tenichols/
snpm). No variance smoothing was used, and 10,000
permutations were performed. To localize the effects
of theoretical models in each task, the RSA maps
were thresholded at a conventional cluster extent-
based inference threshold (voxelwise P < 0.001, FWE
corrected cluster-level P < 0.05) unless explicitly stated.
To demonstrate the task-invariant effects of language
computation models, we performed conjunction anal-
yses over two experiments. The overlapping regions
were considered to show significant positive correla-
tions between neural and theoretical RDMs in both
experiments. As the conjunction method we adopted
here is relatively conservative, which requires significant
regions to be found in both experiments (Nichols et al.
2005; Caria et al. 2012; Kragel et al. 2018), we set the
threshold in each experiment to uncorrected voxelwise
P < 0.005, cluster size > 20 voxels. The brain results were
projected onto the MNI brain surface using BrainNet
Viewer (https://www.nitrc.org/projects/bnv) (Xia et al.
2013).

Validation analyses

We tested if the regions showing the task-invariant,
unique effects of language computation models iden-
tified by the RSA searchlight analysis above (i.e. over-
lapping regions) could be explained by potential con-
founding variables or were robust across different graph
construction methods: (1) We tested and controlled for
(using partial correlation for RSA) the effects of nonverbal
visual object co-occurrence statistical properties (see the
“Construction of visual models” section); (2) We tested
and controlled for nonlinguistic sensory-motor attribute
similarity structures, including 5 sensory-motor attributes
and a semantic domain model (see the “Control RDMs”
section). (3) We employed various graph construction
methods, including different graph types, window sizes,
graph sizes, keyword selection methods, and corpus
selection (see Supplementary Materials for details).

Language-ROI analyses

To more specifically test the effects of interest in those
regions that have been consistently identified as being
language sensitive, we further performed a region of
interest (ROI) analysis, adopting a commonly used lan-
guage mask (contrasting intact sentences to nonword
lists; Fedorenko et al. 2010). The Fisher-transformed cor-
relation values were averaged across voxels within each
ROI for each subject. One-sample t tests across subjects
were then conducted to test whether the RSA results
of the theoretical models were significantly above zero.
Multiple comparisons across ROIs and experiments were
corrected using the Bonferroni method.

Results
Construction of language-computation-model-
based RDMs
Three types of language computational principles
were implemented. Simple co-occurrence counts were
derived from large-scale language corpora (Chinese
Web n-gram Corpora, consisting of approximately 883
billion words) and were PPMI-normalized to represent
first-order proximity between 2 words (Fig. 1a). This
normalized word co-occurrence of the 95 experimental
stimuli (Supplementary Fig. S1 and Table S1) was used
to construct the 95 × 95 simple co-occurrence RDM.
Beyond the simple co-occurrence (i.e. edge RDM in the
graph space), two types of network-(graph)-topological
measures reflecting different aspects of statistical
properties (graph-common-neighbors, graph-CN, and
graph-shortest-path, graph-SP) were computed in a
downsampled graph space (83,007 unique Chinese word
samples as nodes, 34,586,840 PPMI-normalized simple
co-occurrences as edges) to yield a graph-CN RDM
and a graph-SP RDM (Fig. 1b). A word2vec RDM was
constructed based on the cosine distance in a state-of-
the-art pretrained word vector-embedding dataset (Li et
al. 2018) (Fig. 1c). Visualizations of these four RDMs are
presented in Figure 1d. These RDMs were moderately
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to highly intercorrelated (edge RDM with CN RDM,
Spearman’s r = 0.48; edge RDM with SP RDM, Spearman’s
r = 0.40; edge RDM with word2vec RDM, Spearman’s
r = 0.45; CN RDM with SP RDM, Spearman’s r = 0.53; CN
RDM with word2vec RDM, Spearman’s r = 0.68; SP RDM
with word2vec RDM, Spearman’s r = 0.40).

RSA searchlight results: relationship between
language models and brain activity patterns
Neural RDMs of the 95 items were obtained and fit with
language model RDMs for each fMRI experiment in an
iterative sphere (10 mm) of each individual native space
(an individually defined gray matter mask), following the
procedure of whole-brain searchlight RSA (Kriegeskorte
et al. 2006) (Fig. 2a). In each experiment, sanity check
analyses were carried out for stimulus peripheral
variables: pixel RDM, gist RDM, and phonological RDM
in the oral picture naming experiment; pixel RDM,
phonological RDM, and button-press RDM in the word
familiarity judgment experiment. The RSA results of
these control models were highly consistent with the
previous literature (Kriegeskorte, Mur, Ruff, et al. 2008;
Devereux et al. 2013; Carota et al. 2021) (Supplementary
Fig. S2). In the main analyses of the language computa-
tion models, we first looked at the RSA results of each
model independently (“raw” effects), with the peripheral
RDMs in each experiment mentioned above regressed
out. Given that these RDMs of language computation
models are correlated (Fig. 1d), we further carried out
a “unique effect” RSA for each language computation
model, where the effects of the other language models
were further controlled for (all using partial Spearman’s
rank correlations). The results for each fMRI experiment
are shown in Supplementary Materials (voxelwise
P < 0.001, FWE-corrected cluster-level P < 0.05), with
positive results across both experiments, i.e. the shared
cognitive components (word meanings) across exper-
imental inputs/outputs, presented in detail (Table 1).
As this conjunction method is relatively conservative
(Nichols et al. 2005; Caria et al. 2012; Kragel et al. 2018),
we reported clusters that survived the threshold of
uncorrected voxelwise P < 0.005, cluster size > 20 voxels,
across both experiments.

Language model-brain RSA raw results

The maps of group-level whole-brain searchlight RSA
results from each language computation model in each
experiment are shown in Figure 2b (see Supplementary
Fig. S3 for the medial views of each hemisphere; see
Supplementary Fig. S4a and Table S2 for more detailed
results of the oral picture naming experiment, and Sup-
plementary Fig. S4b and Table S3 for results of the word
familiarity judgment experiment).

First-order-edge (simple co-occurrence) distance: In the oral
picture naming experiment, the edge RDM correlated
significantly with neural RDMs throughout the bilat-
eral occipital–temporal cortex, with peak effects in the

lateral occipital cortex (LOC), extending into the early
visual cortex, pMTG, and the posterior division of the
temporal fusiform gyrus (pFG) and bilateral ATL, includ-
ing the right temporal pole (TP), anterior division of
the temporal fusiform gyrus (aFG) and parahippocampal
gyrus (aPHG). In the word familiarity judgment exper-
iment, the neural effects of edge RDM were confined
to the bilateral ATL, including the TP, aPHG and left
anterior division of the MTG (aMTG), the dorsal part
of the medial frontal cortex (medPFC), orbital frontal
cortex (OFC), right precuneus, precentral and postcentral
gyrus, cingulate gyrus, insula and putamen. The overlap
analysis showed that the bilateral ATL, especially the
ventral part, was sensitive to the edge RDM in a task-
invariant manner.

Graph-common-neighbors distance: In the oral picture
naming experiment, neural effects of graph-CN RDM
were found in the occipital and temporal regions,
including the bilateral LOC, pMTG, pFG, and ATL. Clusters
in the bilateral ATL encompassed the TP, aPHG, aFG,
aMTG, and inferior temporal gyrus (aITG). In the word
familiarity judgment experiment, similar patterns were
found in bilateral ATL. Clusters extended into the
medial temporal fusiform gyrus (medFG), orbital frontal
cortex (OFC), and subcortical regions, including the
hippocampus, amygdala, caudate, and thalamus. More
dorsally, clusters were found in the medPFC, precuneous
cortex, cingulate gyrus, precentral gyrus and postcentral
gyrus, right AG, posterior part of the STG, bilateral insular
cortex and primary auditory cortex. The overlap analysis
showed the task-invariant neural representation of the
graph-CN RDM in the bilateral ATL, including the TP,
aFG, aPHG, aMTG and aITG, the OFC and the subcortical
regions, including the hippocampus and amygdala.

Graph-shortest-path distance: In the oral picture naming
experiment, the neural activity patterns in the frontal-
temporal cortex were significantly associated with the
graph-SP RDM, including the bilateral LOC, pFG, pMTG,
left insula, and the pars triangularis part of the left
IFG. More robust results were found in the word famil-
iarity judgment experiment, which spread across the
distributed brain regions, including bilateral temporal
regions (with peak effects located in the left aSTG, aMTG,
left amygdala), frontal regions (with peak effects located
in the bilateral OFC, right caudate, and right medPFC)
and widespread clusters located in the parietal cortex.
The overlap analysis revealed that the task-invariant
representation of the graph-SP RDM was in the bilateral
LOC, bilateral pMTG, left pFG, ventral part of the left AG
and pars triangularis part of the left IFG, as well as the
OFC and insula.

Word2vec cosine distance: In the oral picture nam-
ing experiment, the neural patterns of bilateral LOC
extending into the pMTG were found to be significantly
correlated with word2vec RDM. In the word familiarity
judgment experiment, significant mapping between
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Fig. 2. Whole-brain searchlight RSA results of language computation models across 2 types of word processing fMRI experiments. (a) Task fMRI
experimental design and RSA mapping procedure. Neural responses of 95 items were collected in 2 word processing fMRI experiments (oral picture
naming, PN, and word familiarity judgment, WJ), which varied by input and output modalities but shared common semantic access. Neural RDMs
were constructed as the pairwise correlation distances of neural activity patterns in a searching sphere (10 mm) across the 95 words. Second-order
correlations between neural RDMs and each language computation RDM (simple co-occurrence (edge), graph-CN, graph-SP, and word2vec (w2v)) were
calculated across the whole brain to evaluate where words’ neural representational structures encode a specific computational principle of language
experience. (b) The raw effects of each language computation model (controlling for low-level stimulus and response control variables). (c) The unique
effects of each language computation model (i.e. additionally regressing out the effects of the other 3 models). Statistical maps were thresholded at
voxelwise P < 0.005, cluster size > 20 voxels in each fMRI experiment (see Supplementary Fig. S3 for the medial views of brain results; see Supplementary
Fig. S4, Table S2, and Table S3 for clusters surviving the conventional thresholds in each experiment). The bar plots exhibit the Fisher-Z transformed r
values of the 4 models in the brain regions showing the overlap of unique effects across the 2 fMRI experiments, including graph-common-neighbors
in the bilateral ATL and graph-shortest-path in left IFG and pMTG/ITG.

the word2vec RDM and neural RDMs was found in
the bilateral ATL, extending into the medFG, OFC
and subcortical regions, including the hippocampus,
putamen, and right thalamus. More dorsally, clusters
were found in the precentral and postcentral gyrus, as
well as the insula and primary auditory cortex. No voxels
survived in the overlap analysis when investigating the
task-invariant neural representation of word2vec RDM.

Language model-brain RSA unique results

The unique RSA effects of each language computation
model, with the effects of other language models (and
the peripheral variables) partially removed, reveal the
relative specificity of the target model in explaining
the neural activity in a particular brain region (see
above). The results surviving the conventional cluster
extent-based inference threshold were presented in each
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Table 1. Overlap results of language computation model RSA across two types of word processing experiments.

Brain regions Cluster size (Voxels) MNI Coordinates Brodmann

X Y Z

Overlapping regions of raw effects

First-order edge:
L aMTG/aITG 60 −59 −23 −25 20/21
L aPHG/HIP/AMYG 235 −26 −8 −26 36/20
R TP/aPHG/aFG/OFC/HIP/AMYG 612 30 5 −32 38/36/35/28/11

Common neighbor:
L TP/aPHG/aMTG/aITG/aFG/OFC/HIP/AMYG 993 −37 −2 −30 38/36/35/28/25/11/20/21
R TP/aPHG/aMTG/aITG/aFG/OFC/HIP/AMYG 1,147 37 0 −25

Shortest path:
L IFGtriang/OFC/INS 352 −43 23 3 45/47/48
L LOC/pMTG/AG/pFG 805 −49 −53 2 37/20/21/39/22
R LOC/ITG/pMTG 225 49 −65 −10 37/19

W2V: Null results

Overlapping regions of unique effects

First-order edge: Null results

Common neighbor:
L HIP 46 −28 −13 −23 36
L TP 24 −24 7 −35 38
R TP/aMTG 97 42 5 −28 38/20

Shortest path:
L IFGtriang/OFC/INS 319 −43 24 2 45/47/48
L SFG 39 −7 34 31 32
L SMA 60 −10 8 64 6
L LOC/pMTG/pFG 427 −51 −52 −1 37/20/21/42

W2V: Null results

Note: Effects in clusters with extent < 20 voxels are not shown. Regions are labeled according to the Harvard–Oxford cortical and subcortical atlas. AG, Angular
gyrus; AMYG, amygdala; FG, temporal fusiform cortex; HIP, hippocampus; IFGtriang, inferior frontal gyrus, triangular part; INS, insula; ITG, inferior temporal
gyrus; LOC, lateral occipital cortex; MTG, middle temporal gyrus; OFC, orbital frontal cortex; PHG, parahippocampal gyrus; SFG, superior frontal gyrus; SMA,
supplemental motor area; TP, temporal pole; a, anterior; p, posterior.

experiment separately (oral picture naming in Sup-
plementary Fig. S4a and Table S2; word familiarity
judgment in Supplementary Fig. S4b and Table S3). The
overlap results across the two experiments are shown in
Figure 2c (see Supplementary Fig. S3 for medial views)
and Table 1.

First-order-edge (simple co-occurrence) distance: In the oral
picture naming experiment, the unique neural effects of
edge RDM were in the bilateral LOC, pFG, and early visual
cortex. In the word-judgment experiment, no regions
showed significant effects.

Graph-common-neighbors distance: The significant map-
pings between the graph-CN RDM and neural RDMs in
the bilateral ATL were preserved after regressing out
3 other RDMs in the oral picture naming experiment.
The overlap analysis further confirmed that the task-
invariant neural representation of the graph-CN RDM
was confined in ATL, including the right TP and aMTG,
as well as the left hippocampus.

Graph-shortest-path distance: In the oral picture naming
experiment, RSA mappings between graph-SP RDM and
neural RDMs revealed significant clusters in the pars
triangularis of the left IFG, pMTG, and pFG after regress-
ing out 3 other RDMs. In the word familiarity judgment
experiment, the significant clusters in multiple frontal–
temporal regions were preserved, including the medFG,
OFC, SMA, IFG, and pMTG, as well as widespread clus-
ters located in the parietal cortex. The overlap analy-
sis revealed the task-invariant neural representation of
graph-SP RDM in the pars triangularis part of the left IFG,
left SMA and left pMTG/ITG.

Word2vec cosine distance: No clusters survived the
convention cluster extent-based inference threshold in
either experiment.

In summary, the raw effects (across fMRI experiments)
of the different language computation models were
observed in both overlapping and different brain regions.
The unique effects revealed interesting dissociations:
language graph-CN exhibited unique, task-invariant
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effects in the bilateral ATL, and language graph-SP
exhibited unique effects in the left IFG and left pMTG/ITG
(see Fig. 2c for bar plots of the unique effects). Edge
(simple co-occurrence) and word2vec did not show
overlapping regions of unique effects, i.e. those that
cannot be explained by other models. Note that the left
SMA showed the unique effects of language graph-SP
but did not exhibit significant raw effects, which may
result from complicated intercorrelations between these
language computation RDMs, and it was not included in
the following ROI analyses.

Validation of language specificity 1: visual object
co-occurrence statistical patterns
To investigate whether the observed neural effects of
the language computation models were specific to
computing language-derived statistical information or
reflecting certain domain-general computations for
information from any type of input, we constructed
the same kind of graph representation using visual co-
occurrence statistics from large image corpora (a visual
graph with 82,494 nodes and 3,920,082 visual nonzero co-
occurrence edges, which was derived from a large image
dataset—VisualGenome with 108,077 images) (Krishna
et al. 2017) (Fig. 3a). The same graph-related measures
were calculated, including visual edge, visual graph-CN,
and visual graph-SP.

The visual models were intermediately correlated
with each other (visual edge RDM with visual CN
RDM, Spearman’s r = 0.38; visual edge RDM with visual
SP RDM, Spearman’s r = 0.46; visual CN RDM with visual
SP RDM, Spearman’s r = 0.52) and were weakly yet signif-
icantly correlated with the language models (visual edge
RDM with language edge RDM, Spearman’s r = 0.15; visual
CN RDM with language CN RDM, Spearman’s r = 0.23;
visual SP RDM with language SP RDM, Spearman’s
r = 0.12; Ps < 0.001) (Fig. 3b).

In the whole-brain searchlight RSA of the visual
RDMs (Fig. 3c; see Supplementary Fig. S5 for more
complete visualization), the only significant cluster was
the visual graph-CN in the right transverse occipital
sulcus (TOS) (peak t(25) = 4.96, peak MNI, x = 18, y = −99,
z = 21, cluster size = 113 voxels) in the oral picture naming
experiment under the convention cluster-extent-based
inference threshold (voxelwise P < 0.001, FWE-corrected
cluster-level P < 0.05), with a cluster located in the left
parahippocampal place area (PPA) visible at a lower
threshold (voxelwise P < 0.005, cluster size > 10 voxels).

We focused on the ROIs showing language-model RSA
unique effects (Fig. 2c)—bilateral ATL (language graph-
CN effect), left IFG and left pMTG/ITG (language graph-SP
effect). None of the visual RDMs had any effects in these
regions (Ps > 0.12, uncorrected). Furthermore, the posi-
tive RSA result patterns of the language models in these
regions were preserved after regressing the correspond-
ing visual RDMs (Ps < 0.05, Bonferroni corrected, num-
ber of correction = 6) (Fig. 3d and Supplementary Table
S4).

Validation of language specificity 2: controlling
for sensory-motor attribute and semantic
domain similarity structures
To examine the possibility that the observed neural
effects of the language computation models were
attributed to the sensory-motor similarities of objects,
we constructed 5 sensory-motor attribute RDMs (shape,
motion, color, sound, manipulation) based on the mean
of group responses (20 subjects for each attribute) in
a multiarrangement task. A binary semantic domain
model was also constructed as a comprehensive means
to control for potential categorically based sensory-
motor similarities. These nonlinguistic RDMs were
intermediately correlated with the language models
(Spearman’s rs = 0.09–0.57) (Supplementary Fig. S6a).
Critically, for the ROIs showing task-invariant, unique
effects of language graph models (Fig. 2c), the RSA
results of the language models remained robust after
regressing out these sensory-motor attributes and
semantic domain similarity structures (Supplementary
Fig. S6b and Table S4; Ps < 0.05, Bonferroni corrected,
number of correction = 6).

Validation of graph construction methods
To test the robustness of the language graph represen-
tation, validation analyses were performed to address
the following concerns: (1) Are the results affected by
the graph type (weighted-graph vs. binary-graph)? (2) Are
the results affected by the specific window size choice in
calculating the simple co-occurrence? (3) Are the results
affected by the graph size and the method to select
which words are included in the graph representation?
(4) Are the results affected by specific language cor-
pora being used? We performed analyses with different
graph types (weighted vs. binary), with different window
sizes (2–5 words), a wide range of graph sizes (words
with different frequency ranges—top 15%, 20%, 25%, and
50%), and with identical language corpora for all 4 mod-
els. The main results were robust across these differ-
ent graph construction methods (Fig. 4; for details, see
Supplementary Materials, Supplementary Figs. S7 and S8
and Table S4).

Classical language-area ROI results
To more specifically test the effects of interest in those
regions that have been consistently identified as being
language sensitive, we further performed an ROI analysis,
adopting a commonly used language mask (contrasting
intact sentences to nonword lists) (Fedorenko et al. 2010),
including left ATL, IFG, IFGorb, pMTG, AG, and MFG (Fig. 5,
left panel). We carried out ROI-based RSA analyses across
these 6 language-processing regions for each of the 4
language models after regressing out the other 3 models
(i.e. testing unique effects) and the range of control mod-
els (visual object co-occurrence, sensory-motor attribute
similarity, semantic domain similarity, and peripheral
stimulus properties). Converging with the whole-brain
searchlight results, the effects of edge RDM and word2vec
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Fig. 3. Neural effects of language graph-topological models were not explained by visual co-occurrence statistics. (a) Visual co-occurrence regularities
were derived from a large-scale, human-annotated image database, VisualGenome (approximately 108,077 images, 82,494 objects). The raw co-
occurrence counts in a given image “context” were calculated and normalized into PPMI values. Similar to the computation of language inputs, simple
co-occurrence and graph-related measures were adopted for the visual statistics, including visual object simple co-occurrence (edge), visual graph-CN,
and visual graph-SP. (b) Visual graph RDMs of the 95 words and their relationships with language graph RDMs. Correlations among these visual RDMs and
language RDMs were obtained using Spearman’s rank correlations. (c) Whole-brain searchlight results of the unique effects of visual object graph-CN in
the picture naming task, thresholded at voxelwise P < 0.005, cluster size > 20 voxels (see Supplementary Fig. S5 for the raw and unique effects of other
visual models). The cluster in the black circle survived the threshold of voxelwise P < 0.001, FWE-corrected cluster-level P < 0.05. The dotted lines show
the classical place processing regions (transverse occipital sulcus, TOS; parahippocampal place area, PPA), localized by contrasting large-place-related
object pictures with animal/face pictures in an independent block-designed localizer from 21 healthy subjects. (d) the effects of the visual graph RDMs
in the brain regions showing task-invariant, unique effects of the language graph measures. Bar plots on the left side of the dotted line show the RSA
results of visual graph RDMs, which did not approach significance when they were examined alone or when language graph RDMs were regressed out
(Ps > 0.12, uncorrected). Bar plots on the right side of the dotted line show the unique RSA results of language graph RDMs, when visual graph RDMs
were further included as covariates. Asterisks in (b) and (d) indicate statistical significance surviving P < 0.05, Bonferroni corrected.

RDM were not significant in any of the ROIs (Ps > 0.121,
uncorrected, see Fig. 5 and Supplementary Table S4 for
details); the language graph-CN RDM showed effect trend
only in the ATL (Ps < 0.036, uncorrected); the graph-SP
RDM showed significant results in the IFG, IFGorb, and
pMTG (Ps < 0.05, Bonferroni corrected, number of correc-
tion = 12). Additionally, AG and MFG showed a tendency
for the graph-SP effects (Ps < 0.033, uncorrected) in this
ROI analysis, which were not visible in the whole-brain
searchlight.

Discussion
To understand whether there are neural structures
representing word semantics derived from statistical
properties of language and the types of properties being
captured, we fitted brain activity patterns with word

relations obtained using 3 computational principles:
simple co-occurrence, 2 network topological relations
(graph-common-neighbors and graph-shortest-path),
and NN-derived vector-embedding relations. In 2 fMRI
experiments sharing common semantic representations,
word relations computed from all 4 models correlated
with word brain activity patterns across broadly dis-
tributed brain regions. Importantly, the word relations
derived from the network graph space, and not the
other 2 types, have unique explanatory power for the
neural activity patterns in brain regions associated with
language processing, including ATL, IFG, pMTG/ITG.
Intriguingly, different graph relations were respected
by these regions, with ATL based on the proportions of
common neighbors in a graph (i.e. number of shared
co-occurrence) and IFG and pMTG/ITG based on the
shortest path distances (with trends in AG and MFG).
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Fig. 4. Validation of different graph construction methods in the brain regions showing task-invariant, unique effects of language graph-relation models.
(a) ROI results using a different graph type (binary version). (b) ROI results using different window sizes ranging from bigram to five-gram. (c) Log-
transformed frequency distribution of Chinese words in the Chinese Google n-gram corpora. (d) ROI results using graphs of different sizes, with keywords
selected based on word frequency (top 15%, top 20%, top 25%, top 50%) shown in (c). Bar plots on the left side of the dashed line in (b) and (d) show the
main results obtained in the bigram word co-occurrence graph with keywords selected based on OpenHowNet for the purpose of visualization without
additional statistical inference. ∗, P < 0.05, Bonferroni corrected, numbers of corrections were 6, 18, and 24 in (a), (b), and (d), respectively; #, P < 0.05,
uncorrected.

Fig. 5. ROI RSA results of language computation models in classical language areas. The left panel shows the language-sensitive ROIs (Fedorenko et al.
2010), including left ATL, IFG, IFGorb, pMTG, AG, and MFG. Bar plots show the Fisher-transformed Spearman’s partial correlations between neural RDMs
and each language computation model in each ROI after regressing out the other 3 language models and the full range of control models (visual object
co-occurrence, sensory-motor attribute similarity, semantic domain similarity, and peripheral stimulus properties). ∗, P < 0.05, Bonferroni corrected,
number of corrections for each model = 12; #, P < 0.05, uncorrected.

These neural results of language graph representation
were relatively specific to language, as they were not
associated with relational structures derived from visual
object co-occurrence statistics when using the same
computation methods or explained by (nonlinguistic)
sensory-motor similarities.

Our results describing correlations between all 4
language model patterns and broadly distributed brain
regions are consistent with the literature findings

(Huth et al. 2016; Carota et al. 2017; Pereira et al. 2018;
Wang et al. 2018; Anderson et al. 2019; Carota et al.
2021). In these previous studies, it was not clear what
specific kinds of computations drove these effects, given
the medium-to-high correlations among different types
of language computation models and the lack of compu-
tational transparency with the NN-based models tested.
The current study, comparing the effects of 3 different
kinds of computational principles that capture specific
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aspects of the statistical properties of language (local
statistical regularity, 2 specific types of global-topological
properties, and global-NN-learning based), allows for
the inference that global-network-topological properties
explain the neural activity patterns better than simple
co-occurrence and word2vec, and beyond sensory-motor
similarities, in ATL, IFG, and pMTG/ITG. Such results
provide positive evidence for language-derived semantic
representations in these regions (Bi 2021).

What do these network-graph-topological relations
reflect, how are they different from word2vec cosine dis-
tances, and what are the implications for the represen-
tations in these brain regions? The graph representation
retained the original dimensions given the size of the
word co-occurrence matrix (Jackson and Bolger 2014),
with the extraction of statistical information achieved
through relationships between highly informative neigh-
bors and paths. In this way, more “historical information”
can be preserved. Furthermore, one can select subgraphs
or prune the edges based on word frequency without dra-
matically changing the network structures, especially the
interconnected neighborhoods, indicating the robustness
of this type of representational structure (Eom 2018; see
also our own validation results). By comparison, word
embedding techniques project the word co-occurrence
statistics into a dense vector space, resulting in a
holistic representation of word meanings. In the case
of word2vec, statistical information was compressed
into a fixed, arbitrary, usually 300-dimensional vector
space through error-driven training and hyperparameter
optimizations. It remains controversial whether these
hyperparameter tuning processes are psychologically
meaningful and what information is retained and
lost after dimension reductions (Kumar 2021). The
robustness and the “historical faithfulness” principle of
the graph representation may explain its advantage in
fitting the neural representation over NN spaces such as
w2v, providing a neural basis for the behavioral effects
observed (see introduction and reviews in Karuza et al.
2016).

Network graph representation also has the advan-
tage of unpacking different relationships in the same
framework, which provides novel computational insights
into the functionality of distributed “language regions,”
including ATL, IFG, pMTG, along with AG and MFG
(Fedorenko et al. 2010). These regions have been shown
to manifest complex functional profiles, with ATL and
AG showing different representational preferences for
different semantic relations, such as taxonomic and
thematic relations (Xu et al. 2018). These findings,
while informative of parsing semantic relations into
multiple facets, invite further questions about how
exactly the neural system computes such psychological
dimensions. Our current findings provide a parsimonious
mechanistic account of how the neural system gives rise
to these rich semantic structures: these brain structures
organize neural representations along specific graph-
based statistical properties of language inputs. ATL was

found to track graph-common-neighbors and IFG/pMTG
(and AG/MFG) graph-shortest-path. The shortest path
captures long-range dependency in graph space—it
measures association strength between 2 nonadjacent
nodes, while the common neighbors capture structural
similarity based on second-order proximity. These two
types of statistical properties tend to be associated
with different types of meaning relations, with CN
with taxonomy (semantic categorical) similarity and
edge with associative relations (Jackson and Bolger
2014). Here, we performed an ad hoc analysis on a
word set where taxonomic and thematic relations were
dissociated based on subjective ratings (Xu et al. 2018)
and found such correspondence: CN was more strongly
correlated with taxonomic relations (Spearman’s r = 0.46;
Spearman’s r with thematic relations = 0.31), and SP
with thematic relations (Spearman’s r = 0.46; Spearman’s
r with taxonomic relations = 0.20). That is, the graph-
topological effects we observed provide a parsimonious
computational mechanistic explanation for the previous
findings that ATL represents word taxonomic similarity
(Martin et al. 2018; Xu et al. 2018), IFG and/or pMTG/ITG
contribute to the retrieval of infrequent word associa-
tions, i.e. longer path length distance (Badre et al. 2005;
Whitney et al. 2011), and AG thematic relations (Xu
et al. 2018). Finally, these findings are consistent with
the topological structural observations of the intrinsic
functional semantic network, in which these regions
were identified as connector hubs that bind together
different brain subnetworks: ATL binds the perisylvian
language network and multimodal experiential network,
and pMTG binds the perisylvian language network
and frontoparietal control network (Xu et al. 2016,
2017).

Are these brain regions sensitive to graph-topological
structures from all stimulus modalities/domains? On the
one hand, several sequential learning experiments have
shown that changes in neural representations in medial
temporal, anterior temporal, and frontal regions, after
a short training session involving sequence exposure
(Schapiro et al. 2012; Schapiro et al. 2013; Garvert et al.
2017), follow graph-based statistical regularities (simple
edge, community structure, path distance) of arbitrary
visual stimuli sequences during the formation of episodic
memory. On the other hand, we did not observe any
sensitivity to common neighbors or shortest path
measures from the large visual object co-occurrence
database in these language-sensitive regions. The
statistical patterns computed from the graph relations
based on the visual object corpora instead showed
significant associations with the visual cortex activity
pattern in the picture naming experiment, indicating
an input modality-specific representation of similar
computational structures. This visual object result is
aligned with recent findings of co-occurrence measures
based on visual object2vec (Bonner and Epstein 2021),
while our study further showed that it is the graph
common structures shared between two objects that
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are represented in the “place areas” (TOS and PPA). More
generally, a wave of recent studies has highlighted the
explanatory power of “spatial relationship” or “grid-
like” structures in representing conceptual knowledge
and information in memory in general (Constantinescu
et al. 2016; Theves et al. 2019; Theves et al. 2020).
Here, we showed that the topological distances in
a graph space are better predictors than the cosine
distance in the vector-embedding space in explaining
word representations. The breadth of the application of
the observed computational structures in representing
information in these regions warrants further testing
(Peer et al. 2020).

A few methodological caveats need to be considered.
First, in our current investigation, we used large-scale
language corpora as the proximity of collective language
experience on a group level. It may not be an accurate
reflection of specific language inputs at the individual
level. Computation modeling of word meaning repre-
sentations in the future could benefit from collecting
and estimating individual participants’ language inputs
with the help of personalized big data techniques. Sec-
ond, we specifically considered relatively simple models
that are fully data driven, without prior knowledge such
as grammatical information and attentional allocation
mechanisms. In recent years, there has been a surge of
computation models with improved performances in var-
ious language tasks, such as recurrent neural-network
models (ELMo) (Peters et al. 2018) and attention neural-
network models (BERT) (Devlin et al. 2018); whether their
computational architecture is relevant to brain compu-
tations in ATL/IFG/pMTG awaits further study.

To conclude, combining two fMRI experiments investi-
gating word meaning representations, we found that the
human brain is sensitive to specific graph-topological
properties of language, providing positive evidence
for language-derived semantic representations. Graph-
based topological models of language had unique
explanatory power on words’ neural activity patterns
beyond simple co-occurrence and vector-embedding
models, showing effects in the ATL (capturing
graph-common-neighbors), IFG, and pMTG/ITG (cap-
turing graph-shortest-path), in contrast to the visual
cortex, which shows sensitivity to graph-common-
neighbors computations of visual experiences. Together,
the distributed neural semantic representations across
different brain regions exhibit both information type-
specific (language vs. visual) and computation-specific
(graph-common-neighbors vs. graph-shortest-path)
patterns of organization.
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