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and relatively nonobject-preferring regions (left poste-
rior middle temporal gyrus, bilateral anterior temporal 
lobes, left inferior frontal gyrus, and dorsal medial pre-
frontal cortex; Fig. 2b), which were highly consistent 
with findings reported in the semantic literature ( J. 
Wang et al., 2010; X. Wang et al., 2019). For each word, 
we obtained its activation pattern in this mask for each 
subject, calculated Pearson’s correlations of the activa-
tion patterns across all subject pairs and then Fisher-
transformed and averaged the values to form the ISC 
from brain data for each word.

As shown in the bar plots in Figure 2c, words refer-
ring to concrete referents (objects) such as cat and 
microwave were again highly significantly more consis-
tent across individuals than words without external ref-
erents (mean Fisher-z-transformed r: Mobject = .039, SD =  
.008 vs. Mnonobject = .029, SD = .007), t(88) = 6.23, p = 
1.59 × 10−8, Cohen’s d = 1.33. The ISC-brain and ISC-
behavior values were significantly correlated across 
words (r = .43, p = 2.20 × 10−5). We examined which 
properties of word meanings account for the magnitude 
of ISC-brain values across words. The mean language/
sensory-experience property was the only significant 
predictor in the final multiple regression model (Fig. 4b; 
see also Table S4 in the Supplemental Material), explain-
ing 37.4% of the variance in the ISC from brain data: ISC  
brain = 0.61 × Mean Language/Sensory Experience + 
0.033, F(1, 88) = 52.57, p = 1.53 × 10−10. The effect of 
mean language/sensory experience persisted when we 
included psycholinguistic confounds (see Tables S4 and 
S5) and when we used semantic principal components 
as predictors (see the Results and Table S3 in the Sup-
plemental Material). That is, the more likely it was that 
a word could be described using language and/or was 
associated with sensory experiences (typically those 
with an external referent), the more similar brain activa-
tion patterns it induced across individuals.

Validation analyses using four different word-related 
brain-mask definitions (for details, see the Method sec-
tion) yielded largely similar results to the analyses 
above. For Validation 1, without focusing on voxels 
showing different activations to predefined word types, 
we considered whole-brain ISC, selecting gray-matter 
voxels showing consistently high stability in response 
to words across subjects (following Mitchell et al., 2008).  
Figure 3 shows that the ISC rankings for object words 
and nonobject words were largely consistent across the 
size of the brain mask (number of voxels being 
selected). The positive correlations between ISC-brain 
value and mean language/sensory experience were sta-
tistically confirmed by the analyses shown in Figure 4c. 
Note that the significant correlation results for mean 
navigation and manipulation ratings were driven by 
their intercorrelations with mean language/sensory 
experience, as revealed by partial correlation analyses: 

The effects of mean language/sensory experience still 
held when analyses controlled for navigation or manip-
ulation ratings (ps < .034, for the top 200 to 5,000 
voxels), and the effects of navigation or manipulation 
disappeared when analyses controlled for mean lan-
guage/sensory experience (ps > .17). For Validation 2, 
we used the search term word in Neurosynth to identify 
brain areas consistently shown to be involved in word 
processing across a large number of studies in the neu-
roimaging literature (see Fig. S4 in the Supplemental 
Material). For Validation 3, in case any regions sensitive 
to words’ emotional meanings were not included in the 
main contrast above, we redefined the word-meaning-
associated mask as those clusters sensitive to any dif-
ferences among object versus emotional nonobject 
versus nonemotional nonobject words (see Fig. S5 in 
the Supplemental Material). For Validation 4, we calcu-
lated ISC-brain values using voxels showing the greatest 
sensitivity to object versus nonobject words in indi-
vidual subjects (rather than the group) for each subject 
pair (within the group mask identified in the remaining 
19 subjects; Fedorenko et al., 2010; see Fig. S6 in the 
Supplemental Material). ISC-brain values obtained in 
these ways were highly correlated with the main results 
and all were significantly predicted by mean language/
sensory experiences (Figs. 3 and 4; see also Figs. S4–S6). 
Finally, to examine the possibility that ISC-brain values 
may be driven by activation strength so that words with 
higher activations may show higher ISC, we extracted 
the overall activation strength for each word in a given 
mask and found that overall activation strength indeed 
significantly positively correlated with the ISC from 
brain data across 90 words in various brain-mask defini-
tions (except for ISC-brain values computed with fewer 
than 800 stable voxels in gray matter in Validation 2; r 
range = .23–.68). After we controlled for overall activa-
tion strength using partial correlation, the ISC from 
brain data still significantly correlated with mean  
language/sensory-experience ratings (r range = .24–
.67), indicating that the observed effect of activation-
pattern consistency across individuals was not fully 
attributed to overall activation-strength differences.

Discussion

We found that speakers of the same language from a 
relatively homogeneous cultural and educational back-
ground exhibit substantial differences in their under-
standing of what a word means, measured both by 
behavioral judgment about relations with other words 
and by the patterns of brain activation when reading the 
words. Both behavioral and brain measures showed that 
the magnitude of ISC for a given word can be signifi-
cantly positively predicted by how much the word is 
associated with sensory experience and language 
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descriptiveness. Behavioral and neural response patterns 
for words that refer to concrete entities (e.g., cat, refrig-
erator), which are associated with richer sensory experi-
ences and are more easily described by language, are 
more similar across different people, compared with 
words without external referents (e.g., identity, violence). 
These results were robust when other psycholinguistic 
variables, including familiarity and word frequency (and 
visual complexity in the fMRI experiment), were included 
as covariates and when multiple methods were used to 
construct behavioral measures or define brain masks.

There are debates about how to measure the internal 
representation of word (conceptual) meaning. Explicit-
definition approaches and feature-listing approaches are 
highly controversial (Marggolis & Laurence, 1999; Tyler 
& Moss, 2001). The behavioral measure of word meaning 
based on relational structure with other words, although 
requiring no explicit definition, may be argued to be 
affected by potential task biases, such as the 2D spatial 
constraints of the testing environment and the sampling 
of other words. It is thus worth highlighting that our fMRI 
experiment is more invulnerable to these potential task 
biases because the subjects were asked to simply think 
about the word meaning, with the brain activity pattern 
for that word taken as the internal word representation. 
It may still be argued that the activity pattern of some 
regions may not necessarily be related to meaning, 
although we controlled for the effects of surface visual 
properties and validated the results across multiple brain 
mask definitions. The convergence of findings that we 
obtained using these multiple approaches and control 
analyses is thus particularly reassuring.

Where do intersubject differences about word repre-
sentations come from? Decades of research on the gen-
eral cognitive neural basis of word-meaning (semantic) 
representation (i.e., common across individuals) have 
led to a consensus of a decompositional structure entail-
ing dimensions including salient sensory, motor, and 
emotion-related attributes (Binder et al., 2016; Kousta 
et  al., 2011; Martin, 2016) and nonsensory language-
derived representations (Landauer & Dumais, 1997; 
Striem-Amit et  al., 2018; X. Wang et  al., 2020). One 
source of individual variation may thus come from dif-
ferences in experiences along these dimensions— 
different people may have different types or amounts 
of sensory, emotional, or language experiences with cat 
or violence. Indeed, we found that sensory and language 
properties of words (group-mean judgments) were sig-
nificant positive predictors of how similar or different 
they were across individuals. These measures of lan-
guage descriptiveness and richness of sensory experi-
ence were highly correlated and were higher for words 
referring to objects (concrete words) than for words 
without external referents (abstract words). Although 
their effects on intersubject variability could not be 

disentangled at present, each may contribute to different 
aspects. For sensory representations, the more sensory 
experiences associated with a word, the more likely 
different people are to have at least some similar experi-
ences, that is, the word is likely to be more robust to 
differences. Taking the word cat as an example, although 
people may have different quantities or qualities of tac-
tile experiences with cats, they still have more common 
visual experiences with the form of a cat. If there is little 
sensory experience associated with a word to begin 
with, the same amount of experiential variation may 
lead to greater (sensory-derived) representation differ-
ences. For language, the rating was designed to capture 
how much of the word meaning could be derived from 
language inputs, that is, “to what extent the concept 
denoted by the word could be described and explained 
using language.” The result that words referring to con-
crete referents tend to have higher ratings on this dimen-
sion is consistent with the classic context-availability 
theory (Schwanenflugel & Shoben, 1983), which pro-
poses that the quantity and availability of verbal con-
textual information is lower for abstract concepts than 
for concrete concepts (see also Hoffman et al., 2013). 
The results here that increasing language descriptive-
ness is associated with greater intersubject agreements 
corroborate the findings that language-derived, nonsen-
sory representations are one way of representing knowl-
edge space (Striem-Amit et  al., 2018; X. Wang et  al., 
2020). Intriguingly, we did not observe positive effects 
of emotion-related properties (arousal or valence) or 
action-response properties (manipulation, navigation, 
or stress) in predicting words’ individual variability; 
however, previous literature showed that these dimen-
sions contribute to word representation (Kousta et al., 
2011) and that people differ in terms of emotional per-
ception and concepts (Brooks & Freeman, 2018). These 
null results here are difficult to interpret and may be 
related to word sampling in the current experiment.

The current observations are likely not exhaustive in 
revealing the origins of the intersubject variations in 
word understanding. The results by themselves do not 
speak to whether the meaning representation differ-
ences arise from people’s individual experiences (“nur-
ture”) or from genetic differences in terms of how neural 
circuits of various meaning components are hardwired 
(e.g., Briscoe et al., 2012). Also, it is unclear how the 
intersubject variation patterns of brain functionality 
(Mueller et al., 2013) and of word-meaning representa-
tions observed here are related. Finally, although mod-
ern semantic theories do not directly inherit earlier 
philosophical discussions, it is nonetheless worth noting 
that the current results are more in line with Locke’s 
(1690) speculation that words denoting “complex ideas” 
(e.g., abstract words) may have lower ISC and not with 
Russell’s (1948), who asserted that words entailing more 
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“abstractness of logic” may have greater individual con-
sistency. Russell’s arguments that nonsensory concepts 
have greater agreements may be relevant to specific sets 
of terms in which the definition is more logically trans-
parent (e.g., math terms). The predictive power of a 
word’s specific intrinsic property (language specificity/
sensory experience) regarding agreement across people 
highlights the need to further test factors that specifically 
modulate these properties, including culture and ideol-
ogy ( Jackson et al., 2019; Thompson et al., 2020). Par-
ticularly worth highlighting are the potential effects of 
contemporary artificial intelligence algorithms that are 
widely applied, that is, automated individually tailored 
language (and sensory) inputs, which may symmetri-
cally increase differences in language experiences and 
in turn lead to more drastic differences across people 
in word understanding.

To conclude, we have identified the extent and charac-
teristics of intersubject variations in word understanding, 
showing that the agreements and disagreements of word 
representations systematically differ across different types 
of words. The magnitude of variability can be modeled 
with the association strength of words with sensory expe-
riences and language descriptiveness, greater variability 
being associated with words without rich sensory experi-
ence or specific language descriptiveness (abstract words). 
Such disagreements on single-word meaning may at least 
partly underlie potential human communication failures, 
especially in settings that rely largely on terms without 
external referents such as politics, sociology, or legal 
domains. Increasing language descriptiveness and sensory 
experiences may help reduce miscommunication originat-
ing from these basic elements and facilitate more produc-
tive information exchanges and discussions.

Table A1.  Chinese Words (Along With English Translations) Used in The Present Study

Words with external referents (N = 40) Words without external referents (N = 50)

Animals
(n = 10)

Face/body parts
(n = 10)

Artifacts
(n = 20)

Emotional nonobject 
words

(n = 30)

Nonemotional 
nonobject words

(n = 20)

蚂蚁 (ant) 脚踝 (ankle) 空调 (air conditioner) 愤怒 (anger) 协议 (agreement)
猫 (cat) 胳膊 (arm) 斧头 (ax) 反感 (antipathy) 买卖 (business)
大象 (elephant) 耳朵 (ear) 床 (bed) 冷漠 (apathy) 性质 (characteristic)
长颈鹿 (giraffe) 眼睛 (eye) 扫帚 (broom) 慈善 (charity) 概念 (concept)
熊猫 (panda) 手指 (finger) 柜子 (cabinet) 舒心 (comfortable) 内容 (content)
兔子 (rabbit) 膝盖 (knee) 椅子 (chair) 死亡 (death) 数据 (data)
老鼠 (rat) 嘴唇 (lips) 筷子 (chopsticks) 债务 (debt) 纪律 (discipline)
麻雀 (sparrow) 鼻子 (nose) 鼠标 (computer mouse) 沮丧 (depressed) 作用 (effect)
老虎 (tiger) 肩膀 (shoulder) 锤子 (hammer) 疾病 (disease) 身份 (identity)
乌龟 (tortoise) 大腿 (thigh) 钥匙 (key) 纠纷 (dispute) 方法 (method)
  微波炉 (microwave) 错误 (error) 义务 (obligation)
  铅笔 (pencil) 兴奋 (excited) 现象 (phenomenon)
  冰箱 (refrigerator) 缘分 (fate) 过程 (process)
  剪刀 (scissors) 过失 (fault) 原因 (reason)
  沙发 (sofa) 恐惧 (fear) 关系 (relationship)
  勺子 (spoon) 骗局 (fraud) 结果 (result)
  桌子 (table) 友情 (friendship) 社会 (society)
  电视 (television) 快乐 (happy) 地位 (status)
  牙刷 (toothbrush) 天堂 (heaven) 制度 (system)
  洗衣机 (washing machine) 敌意 (hostility) 团队 (team)
  爱心 (loving heart)  
  魔力 (magic power)  
  婚姻 (marriage)  
  奇迹 (miracle)  
  骄傲 (proud)  
  难过 (sad)  
  风景 (scenery)  
  光彩 (splendor)  
  创伤 (trauma)  
  暴力 (violence)  

Appendix
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